Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Manganese-Carbon (Mn-C) interaction to host Al^{3+} - ion into β -MnO₂-MWCNT Composite Cathode in Rechargeable Aluminium Ion Batteries

Mohan Gorle,^{*a,b*} Santosh N. Chavan,^{*a,b*} A. Vijay Kumar^{*c*} and Vatsala Rani Jetti ^{*a,b* *}

^{*a*}Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.

^cDepartment of Chemistry, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra, India – 400019.

*Dr. Vatsala Rani Jetti, E-mail: vatsala@iict.res.in

XRD Table:

Peak data of MWCNT/β-MnO2-20%							
20	37.2°	56.2°	72.3°				
hkl	101	211	112				
<i>d</i> -spacing	2.45 Å	1.69 Å	1.38 Å				

Table S1. Peak intensities of MWCNT/β-MnO₂-20%

Charge-discharge capacity data MWCNT/β-MnO₂-20%

Sr.	Current	Cycle	Discharge
No.	(mA/g)	intervals	capacity
1	100 mA/g	1 st cycle	269 mAh/g
		20 th cycle	192 mAh/g
2	300 mA/g	21 th cycle	190.4 mAh/g
		40 th cycle	103.5 mAh/g
3	500 mA/g	41 th cycle	102.2 mAh/g
		58 th cycle	55.5 mAh/g

Table S2. Charge-discharge capacity data MWCNT/ β -MnO₂-20%

SEM and EDAX analysis

Fig. S1 (a) FE-SEM and (c) Elemental composition by MWCNT/ β -MnO₂-20% composite (b-d) Elemental color dot mapping by EDAX Overall composite composition and

Fig. S2. TGA Analysis of MWCNT/ β -MnO₂-20%, MWCNT, β -MnO₂

Fig. S3: (a-c) CV plot of 1, 3 and 5 mV/s scan rate β -MnO₂ and (d-f) CV plot of 1, 3 and 5 mV/s scan rate MWCNT and (g-i) CV plot of 1, 3 and 5 mV/s scan rate MWCNT/ β -MnO₂-20% and (j-1) CV plot of 1, 3 and 5 mV/s scan rate MWCNT/ β -MnO₂-50%

EIS analysis

Fig. S4 Electrochemical Impedance Spectroscopy Study of MWCNT, β-MnO₂, MWCNT/β-MnO₂-20%, MWCNT/β-MnO₂-50%, (at 20 kHz to 100 MHz)

Fig. S5: Charge/discharge at different current rate (a) 100 mA/g, (b) 300 mA/g and (c) 500 mA/g

MWCNT/ β -MnO₂-20% (d) overall battery performance at various current.

Fig. S6: Charge/discharge cycling at current rate 100 mA/g charge –discharge graph Voltage vs. Time

Cycled FT-IR analysis

Fig. S7 FT-IR analysis of Pristine material and Cycled charge state cathode material and discharge state cathode material

Fig. S8 XRD analysis of Cycled charge state cathode material and discharge state cathode material

Table 3. Comparison of the Electrochemical Performance in the Present Work with those ofPreviously Reported

S.No	Electrode	Electrolyte	Current	capacity (mAh/g)	Cycle no	Ref. No
1	α -MnO ₂	AlCl ₃ /[EMIm]Cl in (1.3:1) AlCl ₃ -IL electrolyte	500 mA g^{-1}	100 mAh g-1	65	1
2	Birnessite MnO ₂	aqueous Al(OTF) ₃ and MnSO ₄	100 mA g^{-1}	320 mAh g-1	65	2
3	Al _x MnO ₂ ·nH ₂ O	Al(OTF) ₃ (5M) solution	30 mA g^{-1}	467 mAh g-1 55 mAh g-1	1 st cycle 65 cycle	3
4	Zn–Al electrode	Al(OTF)3 aqueous electrolyte	$100 \mathrm{~mAg}^{-1}$	460 mAh g-1	80	4
5	α-MnO ₂	4:1:1 of AlCl ₃ ·6H ₂ O, MnSO ₄ ·6H ₂ O and water	500 mA g^{-1}	285 mAh g-1	500	5
6	Al _x MnO ₂ cathode	2M Al(OTF) ₃ aqueous electrolyte	500 mA g^{-1}	400 mAh g-1	400	6
7	δ-MnO₂	1-Ethyl-3- methylimidazolium chloride ([EMIm]) and AlCl ₃ (1:1 in weight)	100 mA g ⁻¹	59 mAh g-1 29 mAhg-1	1 st cycle 100 cycle	7
This work	β-MnO ₂ (20%) + MWCNT (80%)	Triethyl amine hydrochloride (TEA.HCl)and AlCl ₃ (1:1.5 in mol)	100 mA g ⁻¹	269 mAh g-1 55 mAh g-1	1 st cycle 65 th cycle	-

Q. Zhao, M. J. Zachman, W. I. Al Sadat, J. Zheng, L. F. Kourkoutis, L. Archer, *Sci. Adv.*, 2018, 4, 8131.

S. He, J. Wang, X. Zhang, J. Chen, Z. Wang, T. Yang, Z. Liu, Y. Liang, B. Wang, S. Liu, L. Zhang, J. Huang, J. Huang, L. A. O'dell, H. Yu, *Adv. Funct. Mater.*, 2019, 29, 1905228.

- C. Wu, S. Gu, Q. Zhang, Y. Bai, M. Li, Y. Yuan, H. Wang, X. Liu, Y. Yuan, N. Zhu, F. Wu, H. Li, L. Gu, J. Lu, *Nat. Commun.*, 2019, **10**, 73.
- C. Yan, C. Lv, L. Wang, W. Cui, L. Zhang, K. N. Dinh, H. Tan, C. Wu, T. Wu, Y. Ren, J. Chen, Z. Liu, M. Srinivasan, X. Rui, Q. Yan, G. Yu, *J. Am. Chem. Soc.*, 2020, **142**, 15295.
- W. Pan, J. Mao, Y. Wang, X. Zhao, K. W. Leong, S. Luo, Y. Chen, D. Y. C. Leung, *Small Methods*, 2021, 5, 2100491.
- Q. Ran, H. Shi, H. Meng, S.-P. Zeng, W.-B. Wan, W. Zhang, Z. Wen, X.-Y. Lang, Q. Jiang, *Nat. Commun.*, 2022, 13, 576.
- C. Yan, C. Lv, B.-E. Jia, L. Zhong, X. Cao, X. Guo, H. Liu, W. Xu, D. Liu, L. Yang, J. Liu, H. H. Hng, W. Chen, L. Song, S. Li, Z. Liu, Q. Yan, G. Yu, J. Am. Chem. Soc., 2022, 144, 11444.
- P. Almodóvar, D. A. Giraldo, J. Chancón, I. Álvarez-Serrano and M. L. López, *ChemElectroChem*, 2020, 7, 2102.

Fig. S9 Cycled charge state cathode material EDX

Fig. S10 Cycled discharge state cathode material EDX