Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Information

Boric Acid-Grafted Biochar (BoAB) for the Direct Amidation of

Carboxylic Acids and Amines

Adhish Singh^a, Mohit Kapoor^{a*}

^aChitkara University Institute of Engineering and Technology, Chitkara University, 140417 Rajpura, Punjab, India

*Corresponding authors

Email: mohit.kapoor@chitkara.edu.in

Contents

Figure S1 FESEM images of NBC (a, b) and BoAB (c, d) catalysts.				
Figure S2 XRD spectra of BoAB and NBC catalysts				
Figure S3 Raman spectra of BoAB and NBC catalysts				
Figure S4 FTIR spectra of BoAB and NBC catalysts				
Figure S5 TGA of BoAB and NBC catalysts				
Figure S6 (a) XPS survey spectra of NBC and BoAB, (b) B 1s spectra				
of BoAB	3			
Figure S7 FTIR spectra of fresh and recycled BoAB catalysts				
Figure S8 Recyclability study of BoAB for amidation				
Table S1 Screening of reaction conditions for the amidation of benzoic				
acid with N-benzylamine using biochar catalysts				
Table S2 BET surface area and pore volume estimation from $N_{\rm 2}$				
adsorption/desorption isotherm	5			
NMR spectra of the obtained compounds	6-15			

Figure S1 FESEM images of NBC (a, b) and BoAB (c, d) catalysts.

Figure S2 XRD spectra of BoAB and NBC catalysts

Figure S3 Raman spectra of BoAB and NBC catalysts

Figure S4 FTIR spectra of BoAB and NBC catalysts

Figure S5 TGA of BoAB and NBC catalysts

Figure S6 (a) XPS survey spectra of NBC and BoAB, (b) B 1s spectra of BoAB

Figure S7 FTIR spectra of fresh and recycled BoAB catalyst

Figure S8 Recyclability study of BoAB for amidation

Entry	Catalyst	Solvent	Yield (%)	
1	B(OH) ₃	PhMe	68	
2	BC-BA _P	PhMe	30	
3	BC-PBA _P	PhMe	32	
4	BC-BA	PhMe	44	
5	BC-PBA	PhMe	45	
6	NBC	PhMe	51	
7	BC	PhMe	29	
8	BoAB	PhMe	74	
9	BoAB	MeCN	25	
10	BoAB	DCM	49	
Reaction conditions: benzoic acid (1 mmol), benzylamine (1 mmol), catalyst (5				

Table S1 Screening of reaction conditions for the amidation of benzoic acid with

 N-benzylamine using biochar catalysts

wt. %), solvent (5 mL), Dean-Stark assembly; time: 12 h, temp: 110 °C

Table S2 BET surface area and pore volume estimation from $N_{\rm 2}$ adsorption/desorption isotherm

BET Surface Area (m ² /g)	Pore Volume (cm ³ /g)	
65.93	7.36	

NMR spectra of the obtained compounds

N-benzylbenzamide $(3a)^1$ The compound was obtained as white solids with a yield of 91%. R_f = 0.53 (hexane/ethyl acetate 7:3); ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 7.56 Hz, 1H), 7.52 – 7.27 (m, 5H), 6.51 (s, 1H), 4.64 (d, J = 5.67 Hz, 1H).

N-benzyl-4-fluorobenzamide (3b)² The compound was obtained as white solids with a yield of 82%. $R_f = 0.30$ (hexane/ethyl acetate 8:2); ¹H NMR (500 MHz, CDCl₃) δ 7.8 (m, 2H), 7.3 (m, 5H), 7.0 (t, J = 8.6 Hz, 2H), 6.9 (s, 1H), 4.6 (d, J = 5.7 Hz, 2H). HRMS (EIQTOF, [M+H]⁺) calculated for C₁₄H₁₂FNO: 230.1049. found:

N-benzyl-2-chlorobenzamide (3c)³ The compound was obtained as off-white solids with a yield of 88%. $R_f = 0.45$ (hexane/ethyl acetate 7:3); ¹H NMR (500 MHz, CDCl₃) δ 7.49 (dd, J = 7.55, 1.72 Hz, 1H), 7.33 – 7.18 (m, 8H), 6.83 (s, 1H), 4.52 (d, J = 5.82 Hz, 2H). HRMS (TOF MS ES+, [M+H]⁺) calculated for $C_{14}H_{12}CINO$: 246.0726.

N-benzyl-4-chlorobenzamide (3d)⁴ The compound was obtained as off-white solids with a yield of 87%. $R_f = 0.45$ (hexane/ethyl acetate 7:3); ¹H NMR (500 MHz, CDCl₃) δ 7.71 (dd, 2H), 7.41 – 7.27 (m, 7H), 6.53 (s, 1H), 4.61 (d, J = 5.68 Hz, 2H). HRMS (EIQTOF, [M+H]⁺) calculated for C₁₄H₁₂ClNO: 246.1342.

N-benzyl-2,4-dichlorobenzamide (3e)⁵ The compound was obtained as off-white solids with a yield of 74%. $R_f = 0.45$ (hexane/ethyl acetate 7:3); ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, J = 7.99 Hz, 1H), 7.43 – 7.10 (m, 7H), 6.82 (s, 1H), 4.55 (d, J = 5.39 Hz, 2H).

N-benzyl-2-methylbenzamide (3f)⁶ The compound was obtained as orange solids with a yield of 85%. $R_f = 0.53$ (hexane/ethyl acetate 7:3); ¹H NMR (500 MHz, CDCl₃) δ 7.2 (m, 7H), 7.0 (m, 1H), 7.0 (t, 1H), 6.5 (s, 1H), 4.4 (d, J = 5.7 Hz, 2H), 2.2 (s, 3H). HRMS (EIQTOF, [M+H]⁺) calculated for C₁₅H₁₅NO: 226.1992.

N-benzyl-4-methoxybenzamide $(3g)^6$ The compound was obtained as white solids with a yield of 83%. R_f = 0.33 (hexane/ethyl acetate 7:3); ¹H NMR (500 MHz, CDCl₃) δ 7.7 (m, 2H), 7.2 (m, 4H), 7.1 (m, 1H), 6.8 (t, *J* = 5.8 Hz, 1H), 6.7 (m, 2H), 4.4 (d, *J* = 5.8 Hz, 2H), 3.7 (s, 3H). HRMS (EIQTOF, [M+H]⁺) calculated for C₁₅H₁₅NO₂: 242.1873.

N-benzyl-2-mercaptobenzamide (3h) The compound was obtained as orange solids with a yield of 86%. $R_f = 0.53$ (hexane/ethyl acetate 7:3); ¹H NMR (500 MHz, CDCl₃) δ 8.0 (d, 1H), 7.5 (t, J = 8.3, 7.1, 1.3 Hz, 1H), 7.4 (d, J = 8.1 Hz, 1H), 7.4 – 7.2 (m, 6H), 5.0 (s, 2H).

N-benzyl-4-nitrobenzamide (3i)⁷ The compound was obtained as off-white solids with a yield of 90%. $R_f = 0.53$ (hexane/ethyl acetate 7:3); ¹H NMR (500 MHz, CDCl₃) δ 8.23 (d, J = 8.82 Hz, 2H), 7.93 (d, J = 8.83 Hz, 2H), 7.39 – 7.26

(m, 5H), 6.81 - 6.70 (m, 1H), 4.63 (d, J = 5.68 Hz, 2H). HRMS (EIQTOF, $[M+H]^+$) calculated for $C_{14}H_{12}N_2O_3$: 257.0968.

N-Benzylpicolinamide (3j)⁸ The compound was obtained as white solids with a yield of 78%. $R_f = 0.53$ (hexane/ethyl acetate 6:4); ¹H NMR (500 MHz, CDCl₃) δ 8.4 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 8.3 (s, 1H), 8.1 (dt, J = 7.9, 1.1 Hz, 1H), 7.7 (td, J = 7.7, 1.7 Hz, 1H), 7.3 – 7.2 (m, 6H), 4.6 (d, J = 6.1 Hz, 2H).

N-benzylbutyramide (3k)⁹ The compound was obtained as off-white solids with a yield of 79%. $R_f = 0.53$ (hexane/ethyl acetate 7:3); ¹H NMR (500 MHz, CDCl₃) δ 7.3 – 7.1 (m, 5H), 6.0 (s, 1H), 4.3 (d, J = 5.7 Hz, 2H), 2.1 (t, J = 7.2 Hz, 2H), 1.6 – 1.5 (m, 2H), 0.9 (t, J = 7.4 Hz, 3H).

N-Benzyl-2-(4-isobutylphenyl)propanamide (31)¹⁰ The compound was obtained as white solids with a yield of 68%. $R_f = 0.53$ (hexane/ethyl acetate7:3); ¹H NMR (500 MHz, CDCl₃) δ 7.2 - 7.1 (m, 5H), 7.0 - 7.0 (m, 4H), 5.9 (s, 1H), 4.2 (d, J =5.86 Hz, 2H), 3.5 (q, J = 7.16 Hz, 1H), 2.3 (d, J = 7.20 Hz, 2H), 1.8 - 1.7 (m, 1H), 1.4 (d, J = 7.21 Hz, 3H), 0.8 (d, J = 6.68 Hz, 6H).

N-benzyl-N-methylbenzamide (5a)¹¹ The compound was obtained as colorless oil with a yield of 84%. $R_f = 0.53$ (hexane/ethyl acetate 8:2); ¹H NMR (500 MHz, CDCl₃) δ 7.5 – 7.0 (m, 10H), 4.6 (s, 1H), 4.4 (s, 1H), 2.9 (s, 1H), 2.7 (s, 2H).

N-(4-fluorobenzyl)benzamide (5b)⁹ The compound was obtained as off-white solids with a yield of 82%. $R_f = 0.53$ (hexane/ethyl acetate 7:3); ¹H NMR (500 MHz, CDCl₃) δ 7.7 – 7.7 (m, 2H), 7.4 – 7.4 (m, 1H), 7.3 – 7.3 (m, 2H), 7.3 – 7.2 (m, 2H), 7.0 – 6.8 (m, 2H), 6.7 (s, 1H), 4.5 (d, J = 5.8 Hz, 2H).

N-(2-chlorobenzyl)benzamide $(5c)^{12}$ The compound was obtained as off-orange solids with a yield of 81%. R_f = 0.53 (hexane/ethyl acetate 9:1); ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, J = 6.96 Hz, 2H), 7.48 – 7.41 (m, 1H), 7.39 – 7.30 (m, 4H), 7.20 – 7.15 (m, 2H), 7.04 (s, 1H), 4.65 (d, J = 5.98 Hz, 2H).

N-phenylbenzamide (5d)¹³ The compound was obtained as off-white solids with a yield of 76%. $R_f = 0.53$ (hexane/ethyl acetate 7:3); ¹H NMR (500 MHz, CDCl₃) δ 7.89 – 7.83 (m, 3H), 7.66 – 7.61 (m, 2H), 7.58 – 7.51 (m, 1H), 7.51 – 7.44 (m, 2H), 7.36 (d, J = 7.48 Hz, 2H), 7.15 (t, J = 7.38 Hz, 1H).

N-benzylbenzamide (3a)

N-benzyl-4-fluorobenzamide (3b)

ppm

(7773) 7775 7777 7777 7777 7777 7777 7777 7777 7777 7777 7777 7777 7777 77755 7775 7775 7775 7775 7775 7775 7775 7775 7775 777

N-benzyl-2-chlorobenzamide (3c)

1.03-

6.5

6.0 5.5

N

4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

5.0 ppm

7.00-

10.0

9.5 9.0 8.5 8.0 7.5 7.0

9

N-benzyl-2,4-dichlorobenzamide (3e)

N-benzyl-2-methylbenzamide (3f)

N-benzyl-4-methoxybenzamide (3g)

N-benzyl-2-mercaptobenzamide (3h)

N-benzyl-4-nitrobenzamide (3i)

N-Benzylpicolinamide (3j)

12

N-benzylbutyramide (3k)

N-Benzyl-2-(4-isobutylphenyl)propanamide (31)

N-benzyl-N-methylbenzamide (5a)

N-(4-fluorobenzyl)benzamide (5b)

N-(2-chlorobenzyl)benzamide (5c)

N-phenylbenzamide (5d)

References

- 1 A. Ojeda-Porras, A. Hernández-Santana and D. Gamba-Sánchez, *Green Chem.*, 2015, **17**, 3157–3163.
- 2 C. J. Smedley, A. S. Barrow, C. Spiteri, M.-C. Giel, P. Sharma and J. E. Moses, *Chem. Eur. J.*, 2017, 23, 9990–9995.
- 3 P. Thansandote, D. G. Hulcoop, M. Langer and M. Lautens, *J. Org. Chem.*, 2009, **74**, 1673–1678.
- 4 B. N. Atkinson, A. Rosie Chhatwal, H. V. Lomax, J. W. Walton and J. M. J. Williams, *Chem. Commun.*, 2012, 48, 11626–11628.
- 5 N. Iqbal and E. J. Cho, J. Org. Chem., 2016, 81, 1905–1911.
- 6 Z. Huang, J. E. Reilly and R. N. Buckle, *Synlett*, 2007, **2007**, 1026–1030.
- 7 S. Jamalifard, J. Mokhtari and Z. Mirjafary, *RSC Adv.*, 2019, **9**, 22749–22754.
- 8 H. Morimoto, R. Fujiwara, Y. Shimizu, K. Morisaki and T. Ohshima, *Org. Lett.*, 2014, **16**, 2018–2021.
- 9 N. Wang, X. Zou, J. Ma and F. Li, *Chem. Commun.*, 2014, **50**, 8303–8305.
- 10 M. T. Sabatini, L. T. Boulton and T. D. Sheppard, *Sci. Adv.*, 2017, **3**, e1701028.
- 11 Z. Lu, G. P. A. Yap and D. S. Richeson, *Organometallics*, 2001, **20**, 706–712.
- 12 P. Xu, F.-S. Han and Y.-H. Wang, Adv. Synth. Catal., 2015, 357, 3441–3446.
- 13 A. Kumar and A. K. Bishnoi, *RSC Adv.*, 2014, 4, 41631–41635.