Electronic supplementary information for

# Phenothiazine and semi-cyanine based colorimetric and fluorescent probe for the rapid detection of hypochlorous acid

Zhong-Chao Lin and Xue-Fei Wang\*

Department of Biological Science and Biotechnology, School of Chemical Engineering and Life Sciences, Wuhan

University of Technology, Wuhan, 430070, China.

\*Corresponding author: Xue-Fei Wang.

E-mail address: xuefei@whut.edu.cn.

## Contents

| 1.  | Properties of reported probes                                         | 2  |
|-----|-----------------------------------------------------------------------|----|
| 2.  | Preparation of various other analysts                                 | 8  |
| 3.  | UV/Vis absorption and fluorescence spectra of the XL and XLO          | 9  |
| 4.  | Measurement of the detection limit                                    | 10 |
| 5.  | Selectivity of probe XL                                               | 11 |
| 6.  | High-resolution mass spectra for the reaction mixture of XL with HClO | 12 |
| 7.  | DFT calculations for ICT process                                      | 13 |
| 8.  | Test strips for the detection of HClO                                 | 14 |
| 9.  | pH effect                                                             | 15 |
| 10. | MTT assay of HeLa cells in the presence of XL                         | 16 |
| 11. | Zebrafish imaging layer sweep images                                  | 17 |
| 12. | NMR spectra of related compounds                                      | 18 |

## 1. Properties of reported probes

| Probe                                                                             | Solvent                                 | Sensing mode | LOD     | Time (equiv.)             | Application                                           | Ref. |
|-----------------------------------------------------------------------------------|-----------------------------------------|--------------|---------|---------------------------|-------------------------------------------------------|------|
| $\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | PBS/CH <sub>3</sub> CN (1/4, v/v)       | OFF-ON       | 0.36 µM | 2 min (30 equiv.)         | RAW264.7 cells                                        | 14   |
| S S S S S S S S S S S S S S S S S S S                                             | PBS buffer (pH 7.4)                     | OFF-ON       | 2.8 nM  | <5 s (12 equiv.)          | HeLa cells and Zebrafish                              | 15   |
|                                                                                   | EtOH/PBS buffer (pH<br>7.4, 1:9, v/v)   | OFF-ON       | 89.7 nM | within 5 s (1 equiv.)     | MCF-7 cells                                           | 16   |
|                                                                                   | THF/PBS buffer (v/v =<br>5/5, pH = 7.4) | Ratiometric  | 13.2 nM | within 0.5 min (2 equiv.) | Test strips, real water samples<br>and RAW264.7 cells | 17   |
|                                                                                   | PBS buffer (1% DMSO,<br>pH = 7.4)       | ON-OFF       | 28.3 nM | <60 s (8 equiv.)          | RAW264.7 cells, tissues of rats,<br>arthritis rat     | 18   |

**Table S1.** Summary of the relevant properties of reported probes

|                                                      | PBS buffer (pH 7.4, containing 5% EtOH)        | OFF-ON | 2.89 μmol/L | 20 s (10.0 equiv.) | HeLa cells, RAW264.7 cells,<br>tissues and Zebrafish | 19 |
|------------------------------------------------------|------------------------------------------------|--------|-------------|--------------------|------------------------------------------------------|----|
| $H_2N$<br>$H_2N$<br>$N \to CN$<br>$K \to K^+$<br>F'F | EtOH–PBS solution<br>( $v/v = 6:4$ , pH = 7.4) | OFF-ON | 0.27 μM     | 5 min (12 equiv.)  | Tap water and HeLa cells                             | 20 |
| N OH                                                 | PBS buffer (pH = 7.4)                          | ON-OFF | 667 рМ      | <i>a</i>           | Zebrafish                                            | 21 |
| NC CN<br>NC OH                                       | EtOH/PBS (6:4, v/v, pH<br>= 7.4)               | OFF-ON | 11.51 nM    | ≤2 s (200 equiv.)  | HeLa cells and mice                                  | 22 |
|                                                      | 10 mM PBS containing<br>33% acetonitrile       | OFF-ON | 1.3 nM      | 100 s (1.6 equiv.) | BV-2 cells and mice                                  | 23 |

|                                      | aqueous solution                        | OFF-ON | 0.23 μM | 35 s (5 equiv.)           | HeLa cells, RAW264.7 cells and mice | 24 |
|--------------------------------------|-----------------------------------------|--------|---------|---------------------------|-------------------------------------|----|
| O N O<br>O N O<br>O N H <sub>2</sub> | PBS solution (pH = 5.0)                 | OFF-ON | 16 nM   | Rapid response (1 equiv.) | cells                               | 25 |
| O N O<br>O N O<br>O N H <sub>2</sub> | EtOH/PBS solution<br>(v/v, 1/9, pH 7.4) | OFF-ON | 147 nM  | 1 min (10 equiv.)         | HepG2 and liver tissues             | 26 |

|                                                                                                                                                                                              | ethanol-PBS buffer<br>(1/99, V/V, pH 7.4)                      | OFF-ON      | 24 nM      | <1 min ()                | HeLa cells, real water samples,<br>cellular organization | 27 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------|------------|--------------------------|----------------------------------------------------------|----|
|                                                                                                                                                                                              | Tris-HCl buffer solution<br>(pH<br>7.4, containing 1%<br>DMSO) | OFF-ON      | 35.2 nM    | 40 s (20 equiv.)         | HeLa cells, Zebrafish                                    | 28 |
| godaroo                                                                                                                                                                                      |                                                                | Ratiometric |            | 3 min (4 equiv.)         | HeLa cell, tissue                                        | 29 |
| HO CHO                                                                                                                                                                                       | PBS buffer (pH 7.4, 2%<br>DMSO)                                | Ratiometric | 0.14 μM    | Within 10 s (1.4 equiv.) | HeLa cell, paper                                         | 30 |
| $(\mathcal{A}_{\mathcal{A}}^{S},\mathcal{A}_{\mathcal{A}}^{S},\mathcal{A}_{\mathcal{A}}^{S}) \xrightarrow{P}_{\mathcal{A}}^{P},\mathcal{A}_{\mathcal{A}}^{S},\mathcal{A}_{\mathcal{A}}^{S})$ | CH3CN/PBS (10 mM,<br>pH = 7.4, v/v, 3:7)                       | Ratiometric | 11.8 nM    | 5 min (40 equiv.)        | MCF-7 cells                                              | 31 |
| "000 <sup>.0</sup> 0.0.00"                                                                                                                                                                   | 4                                                              | OFF-ON      | 147 nmol/L | few seconds (5 equiv.)   | RAW 264.7 cells; nude mice                               | 32 |
|                                                                                                                                                                                              | PBS (pH 7.6)                                                   | ON-OFF      | 5.2 nM     | 10 s (1 equiv.)          | RAW 264.7 cells                                          | 33 |

|                   | pH = 7.0, PBS/EtOH =<br>7:3, v/v                            | OFF-ON | 6 nM    | <10 s (1 equiv.) | HeLa cells            | 34 |
|-------------------|-------------------------------------------------------------|--------|---------|------------------|-----------------------|----|
|                   | PBS buffer (PBS/<br>DMF, 9:1, v/v, 10 mM,<br>pH 7.4, 37 °C) | OFF-ON | 0.32 μM | 2 s (4 equiv.)   | H460 cells; mice      | 35 |
| O<br>O<br>N<br>Se | PBS buffer (10 mM, pH<br>7.4)                               | OFF-ON | 13.3 nM | within 8 s ()    | HeLa cells, Zebrafish | 36 |

| Se<br>N. B. +<br>F. F. | PBS buffer (pH = 7.4,<br>20 mM, 0.1% CH <sub>3</sub> CN) | OFF-ON      | 0.8 nM | 5 s (1 equiv.)           | RAW 264.7 cells                                          | 37        |
|------------------------|----------------------------------------------------------|-------------|--------|--------------------------|----------------------------------------------------------|-----------|
| N<br>N<br>N+           | PBS/CH <sub>3</sub> CN (v/v, 9/1,<br>10 mM PBS, pH 7.4)  | Ratiometric | 3.6 µМ | within 1 min (30 equiv.) | Raw 264.7 cells, rat hippocampal slices                  | 38        |
|                        | PBS/CH <sub>3</sub> CN (v/v, 9/1,<br>10 mM PBS, pH 7.4)  | OFF-ON      | 28 nM  | within 10 s (2 equiv.)   | Test strips, real water samples<br>HeLa cells, Zebrafish | This work |

<sup>*a*</sup> Not mentioned (--)

#### 2. Preparation of various other analysts

The various ROS/RNS and other analytes were prepared as follows:

(a)  $ClO^-$  (NaClO),  $H_2O_2$  and TBHP (tert-butyl hydroperoxide) were purchased from the company, and then diluted with deionized water to use.

(b)  $O_2^{-}$ : KO<sub>2</sub> was dissolved in dry DMSO to make the 1 mM stock solution;

(c) •OH: FeSO<sub>4</sub> solution (1.0 mM, 0.1 mL) was added to a solution of H<sub>2</sub>O<sub>2</sub> (1.0 mM, 1.0 mL) in PBS
(10 mM, pH 7.4) to give a 0.1 mM stock solution at room temperature;

(d) ONOO<sup>-</sup>: A stirred solution of NaNO<sub>2</sub> (0.6 M, 10 mL) and H<sub>2</sub>O<sub>2</sub> (0.7 M, 10 mL) in deionized water was added to HCl (0.6 M, 10 mL) at 0 °C, followed immediately by a rapid addition of NaOH (1.5 M, 20 mL). Excess hydrogen peroxide was removed by MnO<sub>2</sub>. The concentration of ONOO<sup>-</sup> was determined by UV analysis with an extinction coefficient of 302 nm ( $\epsilon$ = 1670 M<sup>-1</sup> cm<sup>-1</sup>), and the solution was stored at -20 °C for use;

(e) <sup>1</sup>O<sub>2</sub>: NaMoO<sub>4</sub> solution (10 mM) and H<sub>2</sub>O<sub>2</sub> solution (10 mM) were prepared with PBS (10 mM, pH=7.4), and an aliquot of these two solutions was mixed to obtain a 5 mM of <sup>1</sup>O<sub>2</sub> stock solution;
(f) NO: H<sub>2</sub>SO<sub>4</sub> solution (3.6 M) was added dropwise to a stirred NaNO<sub>2</sub> solution (7.3 M). The resulting gas was passed through a solution of NaOH (2 M) and then deionized water to give a 2.0 mM stock solution.

Other analysts were purchased from commercial suppliers and used directly.

3. UV/Vis absorption and fluorescence spectra of the XL and XLO

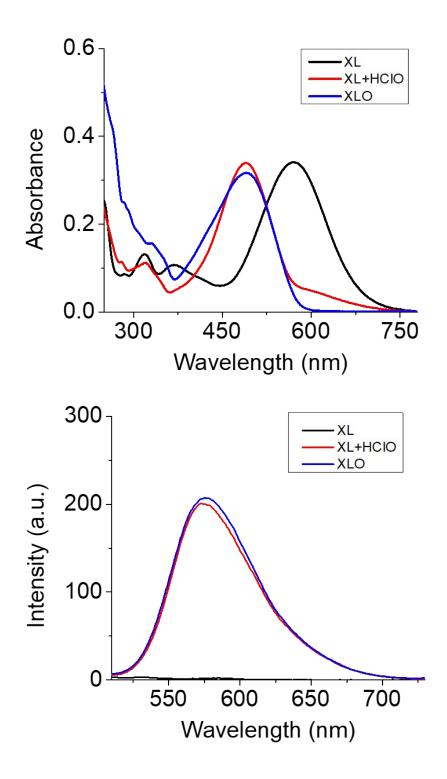
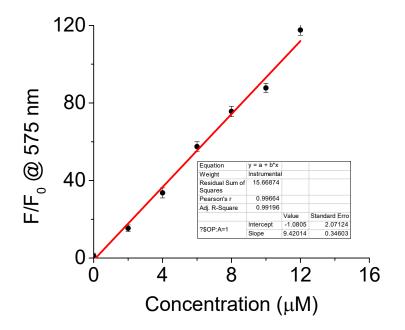
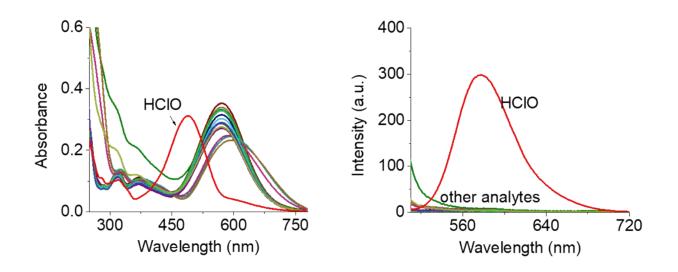




Figure S1. UV/vis absorption (upper) and fluorescence spectra (bottom) of XL, XLO, and 10  $\mu$ M XL with 15  $\mu$ M HClO in PBS (10% CH<sub>3</sub>CN containing, pH=7.4), excitation at 488 nm.

#### 4. Measurement of the detection limit




**Figure S2.** Linear correlation between the fluorescence increment  $(F/F_0)$  of XL at 575 nm and the concentration of HClO.

The detection limit was calculated based on the fluorescence titration:

The fluorescence intensity at 575 nm was fitted linearly with the increasing concentrations of HClO over a range of 0-20  $\mu$ M. From the plot, the slope (*k*) was obtained to be 9.4  $\mu$ M<sup>-1</sup>, shown in Figure S2. The detection limit of XL to HClO was calculated to be 28 nM in term of the formula (3 $\sigma$ /*k*), where  $\sigma$  is the standard deviation of blank measurement.

### 5. Selectivity of probe XL



**Figure S3.** UV/vis absorption (left) and fluorescence (right) spectra of probes with various analytes. (Analytes: 0, blank; 1, Na<sup>+</sup>; 2, K<sup>+</sup>; 3, Cu<sup>2+</sup>; 4, Zn<sup>2+</sup>; 5, Cl<sup>-</sup>; 6, I<sup>-</sup>; 7, SO<sub>4</sub><sup>2-</sup>; 8, Cys; 9, Hcy; 10, GSH; 11, H<sub>2</sub>O<sub>2</sub>; 12, TBHP; 13, O<sub>2</sub><sup>--</sup>; 14, •OH; 15, ONOO<sup>-</sup>; 16,<sup>1</sup>O<sub>2</sub>; 17, NO; 18, ClO<sup>-</sup>)

#### 6. High-resolution mass spectra for the reaction mixture of XL with HClO

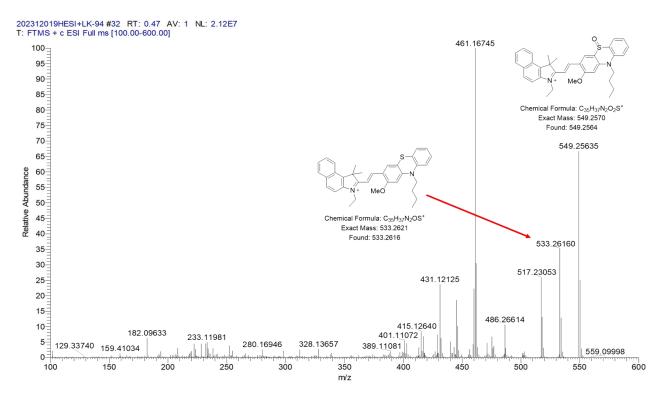



Figure S4. High-resolution mass spectrum for the mixture of XL with HClO.

## 7. DFT calculations for ICT process

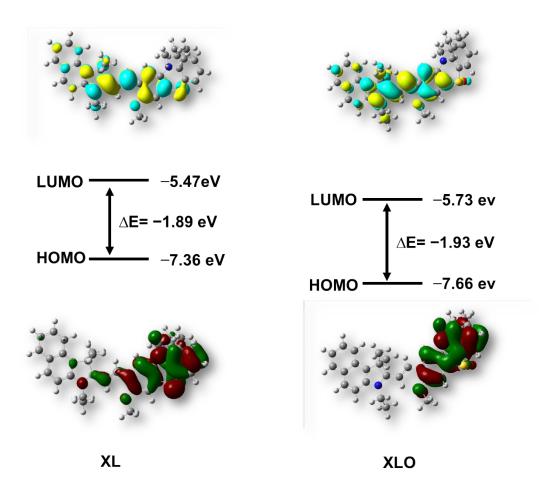
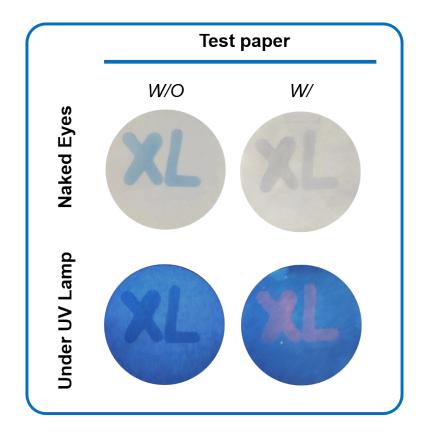




Figure S5. HOMO-LUMO energy level of the probe XL and product XLO.



## 8. Test strips for the detection of HClO

**Figure S6.** Photographs of test strips containing probe XL before (W/O) and after (W/) the treatment with HClO under naked eye observation (upper) or portable UV lamp irradiation at 365 nm (bottom).

## 9. pH effect



**Figure S7.** Fluorescence intensity at 575 nm of probe XL before (black) and after (red) the reaction with HClO at different pH.

### 10. MTT assay of HeLa cells in the presence of XL

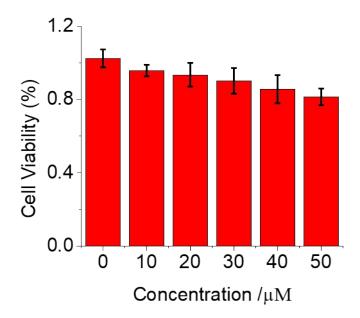
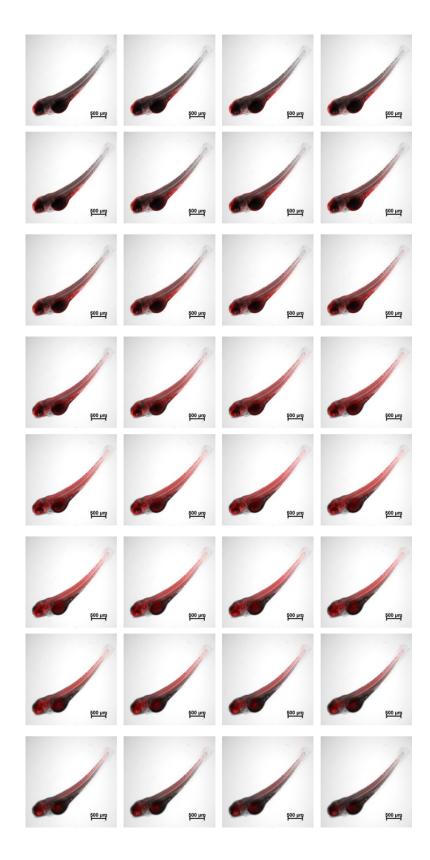
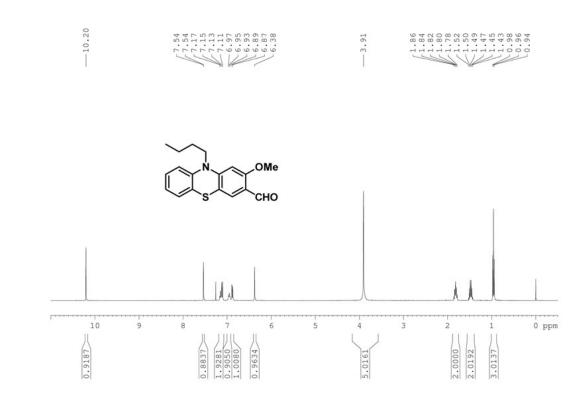
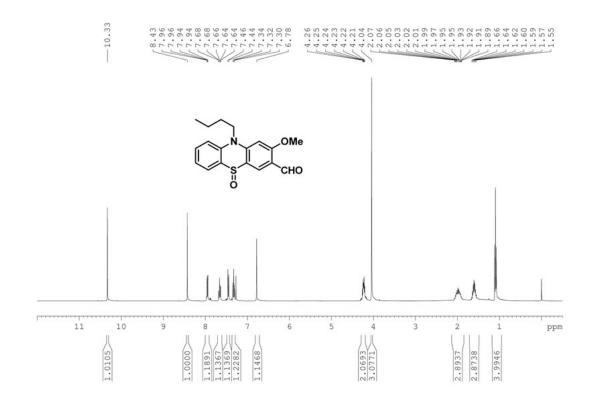


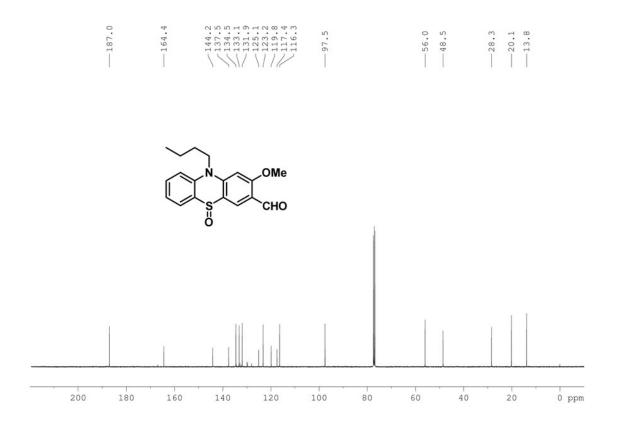

Figure S8. Cytotoxicity assay of probe XL for HeLa cells at different concentrations for 24 h.

## 11. Zebrafish imaging layer sweep images

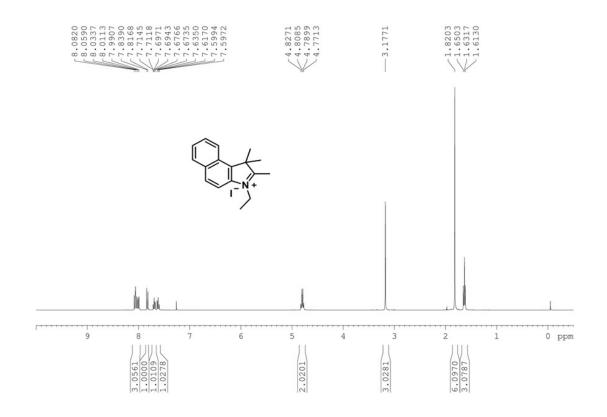





Figure S9. The *z*-axis swept images at different depths.

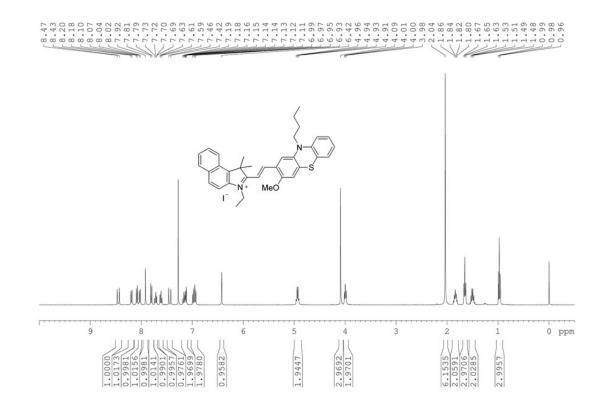
## 12. NMR spectra of related compounds



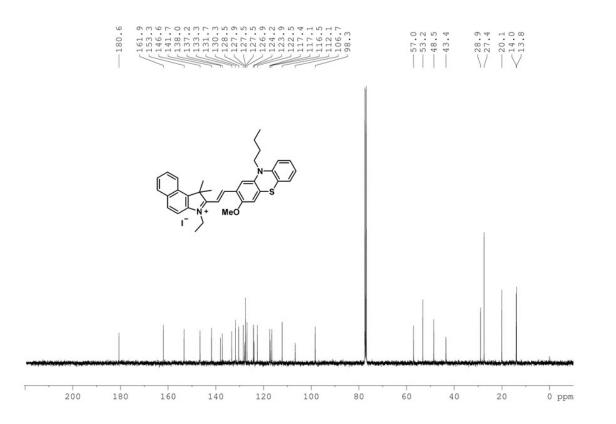

## <sup>1</sup>H NMR of compound **3** in CDCl<sub>3</sub>, 400 MHz.


## <sup>1</sup>H NMR of compound **4** in CDCl<sub>3</sub>, 400 MHz.

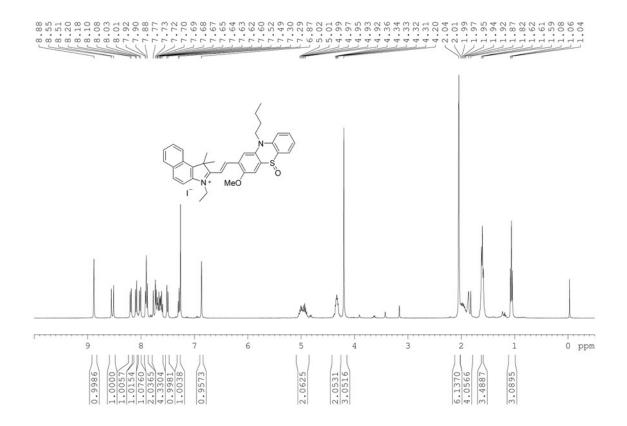



## <sup>13</sup>C NMR of compound **4** in CDCl<sub>3</sub>, 400 MHz.

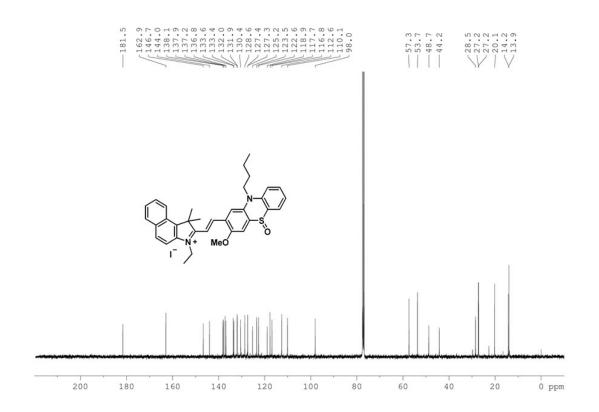



### <sup>1</sup>H NMR of Compound **5** in CDCl<sub>3</sub>, 400 MHz.




 $^1\mathrm{H}$  NMR of XL in CDCl<sub>3</sub>, 400 MHz.




 $^{13}\mathrm{C}$  NMR of XL in CDCl<sub>3</sub>, 100 MHz.



## <sup>1</sup>H NMR of XLO in CDCl<sub>3</sub>, 400 MHz.



### <sup>13</sup>C NMR of XLO in CDCl<sub>3</sub>, 100 MHz.

