Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Steam reforming of aromatics mixture as a model tar over Ni/Al₂O₃ structured catalyst

Ryo Watanabe^a, Takuya Tanabe^a, Yuya Fushimi^a, Priyanka Verma^b and Choji Fukuhara^{a, *}

a) Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University, 3-5-1 Johoku, Chuo-ku, Hamamatsu, Shizuoka 432-8561, Japan

b) Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India

(*) corresponding author: fukuhara.choji@shizuoka.ac.jp

Fig. S1. Carbon balance during durability test for SR-TN over the structured catalyst.

T/N ratio -	Flow rate (mmol·min ⁻¹)			
	Toluene	Naphthalene	H ₂ O	N_2
9/1	0.43	0.048	5.3	4.0
8/2	0.38	0.096	5.5	3.8
7/3	0.34	0.14	5.7	3.6
6/4	0.29	0.19	5.9	3.4

Table S1. Reaction condition of mixture ratio in SR-TN.

Fig. S2. Comparison of durability performance of the structured catalyst to that of the granular catalyst for SR-TN.

