Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

## A high-efficiency oxygen evolution electrocatalyst

## based on a Co<sub>3</sub>[Co (CN)<sub>6</sub>]<sub>2</sub>@NiFe LDH composite material

Jiaan Yu<sup>a</sup>, Ruru Fu<sup>a</sup>, Suyu Ge<sup>a</sup>, Chao Yang<sup>a</sup>, Yun Zhao<sup>a\*</sup>, Caihong Feng<sup>a</sup>, Qingze

Jiao<sup>a,b</sup>, Hansheng Li<sup>a</sup>

<sup>a</sup>Beijing Key Laboratory for Chemical Power Source and Green Catalysis,

School of Chemistry and Chemical Engineering, Beijing Institute of Technology,

South Zhongguancun Street No.5, Haidian District, Beijing 100081, China

<sup>b</sup>School of Materials and Environment, Beijing Institute of Technology, Jinfeng Road

No.6, Xiangzhou District, Zhuhai 519085, China

\*Corresponding author: zhaoyun@bit.edu.cn

## **Experimental Section**

## Materials

All of the chemicals are of analytical degree and can be used without any special treatment. Cobalt acetate tetrahydrate  $(CH_3COO)_2Co\cdot 4H_2O$ , AR), sodium citrate dihydrate  $(Na_3C_6H_3O_7.2H_2O, AR)$ , potassium cobalt cyanide  $(K_3Co(CN)_6]$ , AR), nickel nitrate hexahydrate  $(Ni(NO_3)_2\cdot 6H_2O,$ 98%), ferric nitrate (III) nonahydrate (Fe(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O, 99%), urea (CO(NH<sub>2</sub>)<sub>2</sub>) were bought from Sinopharm Chemical Reagent Co. Ltd. Nafion (5 wt%) was purchased from Alfa Aesar Chemical Co. Ltd, anhydrous ethanol (CH<sub>3</sub>CH<sub>2</sub>OH, GR) was bought from Beijing Tongguang Fine Chemical Co. Ltd.

Materials Characterization.

A scanning electron microscope (SEM, ZEISS Gemini-SEM300) and a transmission electron microscope (TEM, JEOL JEM-F200) were used to examine the micro-nanostructures and morphologies of the composites. Meanwhile, energy dispersive X-ray spectroscopy (EDS, ZEISS Gemini-SEM300) was equipped for elemental distribution analysis. The crystalline phase structure of as-prepared materials was determined by Ultima IV X-ray diffractometer (40 kV, 40 mA, Cu-Kα radiation) at a scanning rate of 10° min<sup>-1</sup> from 5 to 80°. The catalysts were analyzed for elemental composition and valence states using X-ray photoelectron spectroscopy (XPS Thermo Scientific K-Alpha).

Electrochemical testing

All electrochemical tests were carried out using an electrochemical workstation (CHI760E). Firstly, the preparation of catalyst electrodes was carried out using the coating technique. 5 mg of as-prepared catalyst and 5 mg of Super-P were added to a mixed solution formed by 100 µL of Nafion (5 wt%) solution and 900 µL of anhydrous ethanol. The mixture was then sonicated for 45 min to obtain a homogeneous catalyst ink. Afterward, electrochemical tests were carried out with a three-electrode system (1 M KOH alkaline solution). To prepare the working electrode, of catalyst ink was dropped 10 μL onto a glassy-carbon electrode (GCE) with a diameter of 5 mm. A graphite rod was used as the auxiliary electrode, and a Hg/HgO electrode (0.098 vs. RHE) was used as the reference electrode. The potentials were converted to a reversible hydrogen electrode (RHE) according to the Nernst equation of  $E_{RHE} = E_{Hg/HgO} + 0.098 + 0.059$  **@**PH. Meanwhile, all tested potentials were calibrated at 95% iR compensation, with the value of R being the ohmic resistance of the electrolyte. The linear scanning voltammogram (LSV) of the OER from 0.2 V-0.8 V relative to the RHE was determined with the GCE electrode rotating at a constant rate of 1600 rpm and a potential scanning rate of 5 mV s<sup>-1</sup>. Electrochemical impedance spectra (EIS) were measured between 0.01 Hz and 100 kHz with an amplitude of 5 mV for cases where the applied potential was sufficient to trigger the OER. The accelerated stability was tested by 1000 cycles of CV (scanning rate 100 mV s<sup>-1</sup>) in 1 M KOH electrolyte, and the catalyst stability was tested for 10 h by a constant current density of 10 mA cm<sup>-2</sup>. Finally, the electrochemical double layer capacitance (C<sub>dl</sub>) of the various samples was evaluated using CV in the non-Faraday region at different scan rates (v = 20, 40, 60, 80, and 100 mV s<sup>-1</sup>) to determine the electrochemically active surface area (ESCA) accurately.



Fig. S1 SEM images of (a) Co-PBA and (b) NiFe-LDH.



Fig. S3 XPS overall spectrum of Co-PBA@NiFe-LDH-30.



Fig. S3 High-resolution XPS spectra of N 1s of Co-PBA@NiFe-LDH-30.



Fig. S4 CV measurement with various scan rates for (a) Co-PBA@NiFe-LDH-30, (b) Co-PBA@NiFe-LDH-30, (c) Co-PBA@NiFe-LDH-30, (d) Co-PBA and (e) NiFe-LDH in 1 M KOH at 0.92-1.02 V (vs. RHE)



Fig. S5 SEM images of Co-PBA@NiFe-LDH-30 after stability test

| Tab.S1 The element ratio | of Co, Ni, Fe, C, N, and O in Co-PBA@NiFe-LDH-30 by |
|--------------------------|-----------------------------------------------------|
|                          | EDS semi-quantitative Analysis                      |

| Element | Mass (%) | Atomic (%) |
|---------|----------|------------|
| Co K    | 25.60    | 8.13       |
| Ni K    | 9.18     | 2.93       |
| Fe K    | 3.37     | 1.13       |
| C K     | 29.57    | 46.10      |
| N K     | 23.61    | 31.55      |
| O K     | 8.68     | 10.16      |