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1. Characterization

The Powder X-ray diffraction was carried out with a Bruker D8 Focus X-ray diffractometer

with Cu-Kα radiation (λ = 1.54178 Å). Scanning Electron Microscope (SEM) was performed by

using a Hitachi"s new SU-70 type of thermal field emission instruments. The low and high

resolution transmission electron microscopy (TEM) and the corresponding energy dispersive

spectroscope mapping analyses were performed on JME-2100. The X-ray photoelectron

spectroscopy (XPS) was obtained on Escalab 250Xi instrument with a monochromatic Al Kα X-ray

radiation source. The content of metal ions was determined by inductively coupled plasma optical

emission spectrometer (ICAP 7200 ICP-OES). The liquid products were performed by Bruker 400

HZ NMR spectroscopy with TMS as an internal standard. The content of CO was analyzed by gas

chromatograph (GC-2060) with flame ionization detector (FID).

2. Evaluation of Electrochemical Reduction CO2

The working electrode was prepared by drop-drying method with 5 mg catalysts in a solution

containing 120 µL Nafion solution, 400 µL isopropanol alcohol and 600 µL water. The suspension

was sonicated for 30 min to obtain a homogeneous catalyst ink. Finally, 70 µL of catalyst ink were

drop casted onto 1 × 0.5 cm2 carbon cloth (loading: 0.3 mg cm  2). The electrochemical

measurements were carried out with three-electrode system in 0.5 M KHCO3 solution on CHI 760E

electrochemical workstation (ChenHua, Shanghai). A platinum sheet and Ag/AgCl electrode

(saturated KCl) were used as a counter electrode and the reference electrode, respectively. All the

measured potentials vs. Ag/AgCl were converted to reversible hydrogen electrode (RHE): ERHE =

EAg/AgCl+ 0.059  pH + 0.197 V. The value of faradaic efficiency (FE) was calculated according to

the formula: FE = 2F × nCO / Q = 2F ×nCO / (I × t), where F is 96485 C/mol and nCO is the molar
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mass of CO. The TOF value of the electrocatalyst via mass loading was calculated as follows:

TOF(s1) I∙FE/2F
m∙ω/Mr

=. The ECSA was calculated by the electrochemical double-layer capacitance (Cdl)

with the cyclic voltammetry (CV) curves in non-faradaic potential region.
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Figure S1. Element mapping of CoPc/M-N-C.

Figure S2. (a) Fe 2p and (b) Ni 2p high resolution XPS spectra of catalysts.
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Figure S3. CO2 adsortpion isotherms of CoPc/M-N-C.

Figure S4 Faradic efficiency of CoPc
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Figure S5. Current densities for CoPc/Fe-N-C at various potential.

Figure S6. Current densities for CoPc/Co-N-C at various potential.
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Figure S7. Current densities for CoPc/Ni-N-C at various potential.

Figure S8. Liquid NMR spectrum at 0.68 V vs.RHE for CoPc/Fe-N-C.
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Figure S9. CVs plots in the non-faradaic potential for CoPc/Fe-N-C.

Figure S10. CVs plots in the non-faradaic potential for CoPc/Co-N-C.
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Figure S11. CVs plots in the non-faradaic potential for CoPc/Ni-N-C.

Figure S12. Current densities against the scan rates of CoPc/M-N-C.
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Figure S13.The SEM image of CoPc/Ni-N-C ink on carbon cloth

Table S1 ICP-OES results of transition metal loading amount.

Catalysts Co (wt%) Fe (wt%) Ni (wt%)

CoPc/Fe-N-C 0.092 0.118

CoPc/Co-N-C 0.230

CoPc/Ni-N-C 0.182 0.075

Table S2 Porous properties of CoPc/M-N-C

Catalysts SLangmuir (m2 g-1) Vp (cm3 g-1) Pore width (nm)

CoPc/Fe-N-C 97.16 0.0476 4.27

CoPc/Co-N-C 89.00 0.0433 4.31

CoPc/Ni-N-C 87.34 0.0429 4.05
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Table S3 Summary of electrocatalytic CO2RR with CoPc based catalysts reported in the literature

Catalysts
Load

(mg/cm2)

Produ

ct

On-set

Potentials

(V vs.

RHE)

Faradaic efficiency

TOF (S-1)

Tafel

slope

(mV/de

c)

Ref.Potentials

(V vs. RHE)
FEco

CoPc-P4VP - CO, H2 -0.48 -0.73 >90% 4.8 (-0.73 V) - 1

CoPc-A/CCG 0.12 CO, H2 -0.49 -0.79 91.5% 5.0 (-0.6 V) 172 2

CoPc-py-CNT - CO, H2 -0.40 -0.53 91% 34.5 (-0.63 V) 117 3

CoPc/ZnIn2S4 0.50 CO, H2 - -0.73 93% - 141 4

CoPc/CNT 0.40 CO, H2 -0.46 -0.63 92% 2.7 (-0.63 V) - 5

CoPc-CN/CNT 0.40 CO, H2 -0.46 -0.63 98% 4.1 (-0.63 V) - 5

CoPc/CNT-2 0.40 CO, H2 -0.40 -0.60 >90% 2.2 (-0.61 V) - 6

CoPc/C 0.30 CO, H2 -0.30 -0.60 >90% 3.9 (-0.70 V) 178 7

Co-N5/HNPCSs - CO, H2 -0.37 -0.57 >90% 0.14 (-0.70 V) - 8

CoPc©Fe-N-C - CO, H2 -0.13 -0.23 >90% - - 9

U120-CoPc/KB 0.30 CO, H2 -0.2 -0.7 96.4% - 118 10

CoPc/Fe-N-C 0.30 CO, H2 -0.28 -0.48 99% 6.33 (-0.48 V) 142 This study

CoPc/Ni-N-C 0.30 CO, H2 -0.28 -0.58 >90% 1.15 (-0.48 V) 146 This study

CoPc/Co-N-C 0.30 CO, H2 -0.28 -0.68 74% 1.26 (-0.48 V) 189 This study
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