Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Synthesis of Novel Triazoles as Anticancer Agents Targeting pJNK in Human Breast Cancer Cells

Tejaswini P. Siddappa^{1,†}, Chandra Sekhar Bhol^{2,†}, Akshay Ravish¹, Zhang Xi³, Bhanuprakash C. Narasimhachar⁴, Arun M. Kumar¹, Shreeja Basappa⁵, Arunachalam Chinnathambi⁶, Chandramohan Govindasamy⁷, Santhosh L. Gaonkar⁸, Peter E. Lobie^{3,9,10}, Vijay Pandey^{9,10,*} and Basappa Basappa^{1,*}

- ^{1.} Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India; sptejaswini1996@gmail.com (T.S.P.); akshayrv533@gmail.com (A.R.); arunmysore3@gmail.com (A.M.K.).
- ² Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore-117600; csbhol@nus.edu.sg (C.S.B)
- ^{3.} Shenzhen Bay Laboratory, Shenzhen 518055, China; zhangxi@szbl.ac.cn (Z.Xs.).
- ⁴ Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570005, Karnataka, India; bhanuprakashcn28@gmail.com (B.C.N.).
- ^{5.} Department of Chemistry, BITS-Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, India; f20210833@hyderabad.bits-pilani.ac.in (S.B.)
- ⁶ Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh -11451, Saudi Arabia; carunachalam@ksu.edu.sa (A.C.)
- ^{7.} Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia; cgovindasamy@ksu.edu.sa (C.G.)
- ⁸ Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, 576104, Manipal, Karnataka, India; sl.gaonkar@manipal.edu (S.L.G.)
- ⁹ Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; pelobie@sz.tsinghua.edu.cn (P.E.L.).
- ^{10.} Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
- [†] These authors contributed equally to this work.

* Correspondence: vijay.pandey@sz.tsinghua.edu.cn (V.P.); salundibasappa@gmail.com (B.B.)

Figure S2: ¹³C NMR of **3**

Figure S4: ¹³C NMR of 4

Figure S6: IR spectra of 4

Figure S10: Mass spectra of 5a

Figure S11: IR spectra of 5b

Figure S12: ¹H NMR of **5b**

Figure S13: ¹³C NMR of **5b**

Figure S14: Mass spectra of 5b

Figure S15: Liquid chromatogram of compound 5b

Figure S16: ¹H NMR of **5**c

Figure S17: ¹³C NMR of **5**c

Figure S18: Mass spectra of 5c

Figure S19: IR spectra of 5d

Figure S22: Mass spectra of 5d

Figure S25: Mass spectra of 5e

Figure S26: ¹H NMR of **5**f

Figure S29: IR spectra of 5g

Figure S32: IR spectra of 5h

Figure S35: IR spectra of 5i

Figure S38: IR spectra of 5j

<1155 L138

Figure S39: ¹H NMR of 5j

Figure S40: ¹³C NMR of 5j

Figure S41: Mass spectra of 5j

Figure S42: IR spectra of 51

Figure S54: ¹³C NMR of **5**l

Figure S45: Mass spectra of 51

Figure S46: IR spectra of 5m

Figure S49: IC₅₀ values of compounds 5(a-m)

➤ Cell line: MCF7 (2000cells/per well96-well plate)
 ➤ Treated time: 72hrs

➤Assay: alamarBlue (4hrs incubated)

Conc.(µM)	Viability	
	AVE.	±SD
0	100.0	3.97
0.01	100.48	2.00
0.1	99.00	4.01
1	76.96	0.74
10	70.51	5.83
100	48.84	2.85

Conc.(µM)	Viab	ility
100000	AVE.	±SD
0	100.0	2.50
0.01	93.18	4.05
0.1	92.58	4.88
1	71.60	3.24
10	45.05	2.99
100	0.00	0.00

Conc.(µM)	Viability	
	AVE.	±SD
0	100.0	3.97
0.01	100.48	2.00
0.1	99.00	4.01
1	76.96	0.74
10	70.51	5.83
100	48.84	2.85

Conc.(µM)	Viability	
	AVE.	±SD
0	100.0	3.97
0.01	100.48	2.00
0.1	99.00	4.01
1	76.96	0.74
10	70.51	5.83
100	48.84	2.85

➤Cell line: MCF7 (2000cells/per well96-well plate)
➤Treated time: 72hrs

Viability

±SD

1.88

>Assay: alamarBlue (4hrs incubated)

Conc.(µM)

0

Conc.(µM)	Viability	
100	41.75	3.99
10	83.54	5.56
1	98.65	2.46
0.1	103.50	2.54
0.01	103.99	1.24

AVE.

100.0

conc.(µivi)	viad	anty
	AVE.	±SD
0	100.0	2.14
0.01	98.99	1.30
0.1	96.17	0.83
1	80.41	2.18
10	60.62	3.49
100	29.58	2.39

Conc.(µM)	Viability	
	AVE.	±SD
0	100.0	1.22
0.01	101.48	4.70
0.1	98.11	1.82
1	102.71	1.59
10	91.37	3.10
100	85.00	3.61

Conc.(µM)	Viability	
	AVE.	±SD
0	100.0	1.42
0.01	101.48	2.57
0.1	99.89	1.50
1	77.69	2.50
10	63.06	4.30
100	43.25	3.40

log[inhibitor]µM

Conc.(µM)	Viability	
	AVE.	±SD
0	99.80	2.03
0.01	102.82	6.11
0.1	103.50	4.69
1	101.15	3.97
10	96.36	1.90
100	78.78	0.77

Conc.(µM)	Viability	
	AVE.	±SD
0	100.0	2.44
0.01	101.92	3.66
0.1	100.21	4.13
1	94.10	9.21
10	76.42	1.82
100	54.29	1.77

Conc.(µM)	Viability	
	AVE.	±SD
0	100.0	0.46
0.01	101.53	1.34
0.1	99.83	4.89
1	105.64	1.48
10	104.28	0.98
100	60.08	3.06

Conc.(µM)	Viability	
	AVE.	±SD
0	100.0	3.75
0.01	102.67	3.99
0.1	103.83	1.92
1	106.27	3.24
10	93.99	3.62
100	66.89	1.39

Conc.(µM)	Viability AVE.	±SD
0.01	103.55	2.50
0.1	100.39	3.08
1	98.94	4.82
10	84.80	4.08
100	56.26	3.35