Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Information

Fabrication of graphitic carbon nitride synthesized via pyrolysis for environmental

remediation: A detailed experimental analysis with different parametric optimizations

S. Ilakiya¹, M. Keerthana², N. Ponpandian², P. Thangadurai^{1,*}

¹Centre for Nanoscience and Technology, Pondicherry University, Kalapet,

Puducherry - 605 014, India.

²Department of Nanoscience and Technology, Bharathiar University, Coimbatore - 641046, Tamilnadu, India

*Corresponding author: thangaduraip.nst@pondiuni.edu.in / thangadurai.p@gmail.com

1.0 INTRODUCTION

Figure S1. Chemical structure of Rh-6G dye.

2.0 Preparation process of $g-C_3N_4$

Figure S2. Preparation process of g- C_3N_4 from urea using thermal condensation.

3.0 Microstructure and Composition Analysis

Figure S3. (a) Thickness evaluation and (b) SEM micrographs of g-C₃N₄.

3.1 XPS Analysis

Figure S4. The XPS spectrum of $g-C_3N_4$ showing the peaks corresponding to the constituent elements O.

4.0 Optimization of Rhodamine-6G dye concentration

Figure S5: Represents the concentration optimization of $g-C_3N_4$ photocatalyst in Rh-6G dye under UV light illumination. (a) 0.05 mmol, (b) 0.04 mmol,(c) 0.03 mmol, (d) 0.02 mmol, (e) 0.01 mmol, (f) 0.005 mmol concentrations.

Concentration	Rate constant	Efficiency	Catalyst	Rate	Efficiency
(mmol)		(%)	(mg)	constant	(%)
0.005	1.8852	100	10	0.2292	69.6
0.01	1.2774	99.6	20	0.3078	80.9
0.02	0.564	95.5	30	0.3816	87.1
0.03	0.4776	92.7	40	0.4824	92.4
0.04	0.1944	62.2	50	0.9276	99.6
			60	0.3306	84.5
			70	0.4398	90.2

Table T1. The rate constant and degradation efficiency values for concentration and catalyst loading optimization experiment.

4.1 Optimization of catalyst loading

Figure S6: Represents the catalyst optimization of $g-C_3N_4$ photocatalyst in Rh-6G dye under UV light illumination. (a) 10 mg, (b) 20 mg, (c) 30 mg, (d) 40 mg, (e) 50 mg, (f) 60 mg, (g) 70 mg.

4.2 PHOTOCHEMICAL REACTIONS INVOLVED IN Rh-6G DYE DEGRADATION BY g-C $_3N_4$

The photochemical reactions involved during the photocatalytic degradation of Rh-6G dye by the $g-C_3N_4$ nanosheet photocatalyst under the UV light irradiation.

- 1. The photoexcitation of $g-C_3N_4$ $g-C_3N_4 + h\nu \rightarrow e^- + h^+$
- 2. Ionosorption of oxygen $O_2 + e^- \rightarrow {}^{\bullet}O_2^-$
- 3. Followed by ionization of water $H_2O \rightarrow OH^- + H^+$
- 4. The hydroxyl ion gets oxidized OH⁻ + h⁺ \rightarrow •OH
- 5. The superoxide radical gets protonated ${}^{\bullet}O_2^{-} + H^{+} \rightarrow HO_2^{\bullet}$
- 6. Co-scavenging of electron HO₂• + $e^- \rightarrow$ HO₂⁻
- 7. Formation of hydrogen peroxide $HO_2^- + H^+ \rightarrow H_2O_2$
- 8. •OH radical formation $H_2O_2 + e^- \rightarrow \bullet OH + OH^-$
- 9. Degradation of dye in water by the active species Pollutant + •O₂⁻ → Degradation product Pollutant + h⁺ → Oxidation product

Pollutant + $e^- \rightarrow$ Reduction product

4.3 RADICAL TRAPPING EXPERIMENT ON g-C₃N₄ IN Rh-6G DYE

Figure S7: Shows the effect of radical scavenger on Rh 6G photodegradation on $g-C_3N_4$ photocatalyst under UV light. (a) BQ, (b) TBA, (c) SO, (d) AgNO₃, (e) No scavenger, (f) C/C_0 , (g) Rate constant.

Scavenger	Rate constant (h ⁻¹)		
BQ	0.189		
TBA	0.417		
SO	0.5592		
AgNO ₃	0.5544		
No scavenger	0.7704		

 Table 2. The rate constant values for scavenger test photocatalytic studies.

4.4 pH TEST EXPERIMENT ON g-C₃N₄ IN Rh-6G DYE

Figure S8: Effect of pH on degradation of Rh-6g using $g-C_3N_4$ photocatalysts under UV light. (a) pH 3, (b) pH 5, (c) pH 9, (d) pH 11, (e) Rate constant, (f) Efficiency bar graph for 180 min.

Figure S9: Recyclability of $g-C_3N_4$ photocatalyst under UV light illumination in six runs of cycles. (a) RC1, (b) RC2, (c) RC3, (d) RC4, (e) RC5, (f) RC6, (g) Rate constant.