Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Structural Basis for Cu(II) Metallocycle Hexamer Formation

Matthew L. Bracken,^{*a} Manuel A. Fernandes, ^a Daniel Wamwangi^{b,c} and Orde Q. Munro^{a,d}

^aUniversity of the Witwatersrand, Molecular Sciences Institute, South Africa

^bSchool of Physics, University of the Witwatersrand, Wits 2050, Johannesburg, South Africa

^cDSI-NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, Wits 2050, Johannesburg, South Africa

^dUniversity of Leeds, Department of Chemistry, UK

S1 ORTEP Diagrams

S1.1: Thermal ellipsoid diagram of the asymmetric unit of **Cu1** where all atoms are shown at 50% probability level.

S1.2: Thermal ellipsoid diagram of the asymmetric unit of **Cu2** where all atoms are shown at 50% probability level.

S1.3: Thermal ellipsoid diagram of the asymmetric unit of **Cu3** where all atoms are shown at 50% probability level.

S2 Computational

S2.1: **Cu1** calculated at the b3lyp/lan2dz level of theory. The spin density plot showns significant $3d_{x^2-y^2}^2$ character and electron density is dispersed over the cyclic assembly. Hence, antiferromagnetic coupling is likely affecting the stability of the metallocycle, where spin coupling has lowered the potential energy of the superstructure.

S2.2: The inner coordinations sphere of **Cu1** calculated at the b3lyp/lan2dz level of theory showing the spin-density on the left, and the LUMO +3 on the right. The spin-density plot shows the bridging carbonyl interaction is dominated by σ -overlap between the metal-based $3d_{x^2-y^2}^2$ orbital and σ^* MO of the carbonyl. The LUMO shows additional antibonding involving π -overlap of the copper-based $3d_{xy}$ orbital and the π^* MO of the bridging carbonyl. Additionally, the axially coordinated solvent molecule shows significant $3d_z^2$ character, substantiating the claim that the z-axis is collinear with the axial position.

S2.3: The inner coordinations sphere of **Cu2** calculated at the b3lyp/lan2dz level of theory showing the spin-density on the left, and the LUMO on the right. The spin-density plot shows the bridging carbonyl interaction is dominated by σ -overlap between the metal-based $3d_{x^2-y^2}^2$ orbital and σ^* MO of the carbonyl. The LUMO shows additional antibonding involving π -overlap of the copper-based $3d_{xy}$ orbital and the π^* MO of the bridging carbonyl.

S2.4: The inner coordinations sphere of **Cu3** calculated at the b3lyp/lan2dz level of theory showing the spin-density on the left, and the LUMO +3 on the right. The spin-density plot shows the bridging carbonyl interaction is dominated by σ -overlap between the metal-based $3d_{x^2-y^2}^2$ orbital and σ^* MO of the carbonyl. The LUMO shows additional antibonding involving π -overlap of the copper-based $3d_{xy}$ orbital and the π^* MO of the bridging carbonyl. Additionally, the axially coordinated solvent molecule shows significant $3d_{z^2}^2$ character, substantiating the claim that the z-axis is collinear with the axial position.

S3 Magnetic Measurements

S3.1: Isotherm curves for **Cu1** between 300 and 2 K. There is soft ferromagnetism at 300 K which transforms to ferromagnetism with paramagnetism at 100 K. At 2 K there is an antiferromagnetic structure inducing a paramagnetic effect. These data indicate magnetic ordering.

S3.2: Isofield curves for **Cu1** at 1000 and 10000 Oe. There are low temperature antiferromagnetic signatures at T < 8.3 and 9.3K, for 1 and 0.1T, respectively. It is seen that the Neel temperature is field dependent. Antiferromagnetic exchange interactions transferred through C-N-O_{amide} supported by DFT spin-density plots.

S3.3: Isotherm curves for **Cu2** between 300 and 2 K. Below the Neel temperature T < 8 K, we have antiferromagnetic and super-paramagnetic phases. At T > 8 K, a paramagnetic structure emerges which decreases with increasing temperature. The super-paramagnetic phase at low temperature indicates magnetic ordering.

S3.4: Isofield curves for **Cu2** at 1000 and 10000 Oe. Below the Neel temperature T < 8 K, we have antiferromagnetic and super-paramagnetic phases.

Isotherm Curves of Cu3

S3.5: Isotherm curves for **Cu3** between 300 and 2 K. The solid sample is diamagnetic at 300 K indicating unpaired electrons in the metallocycle respond to an applied field to become ordered at room temperature. At 100 K, there is a moment reversal as **Cu3** becomes paramagnetic. There is complete paramagnetism at 2 K.

S3.6: Isofield curves for **Cu3** at 1000 and 10000 Oe. The sample shows no exchange interactions at low temperature.

S4 Tensegrity

S4.1: The geometry of C–H··· π and d··· π interactions. The centroid of the aromatic ring is marked "x" and the normal to the aromatic plane is shown as a solid black line. The atom-to-centroid distances are marked by solid red lines while atom-to-plane distances are marked by dashed red lines. The angles that define the interaction have been marked in red. The C–H··· π interaction has optimal overlap when the angle at hydrogen ∠C–H–X approaches 180°. The metal d··· π interaction has optimal overlap when the angle at the centroid ∠C–X–M approaches 90°. The angle is defined by selecting the atom in the aromatic ring closest to the metal centre, the centroid of the ring, and the metal centre itself. When the d··· π interaction has optimal overlap all angles ∠C–X–M will approach 90° as the dz² orbital approaches the centroid of the aromatic ring. When the d··· π interaction angle ∠C–X–M is acute, but greater than 45°, the d_{xz} and d_{yz} orbitals are orientated for favourable overlap with the π molecular orbitals of the aromatic ring. Hence, C–H··· π interactions will be described by the atom-to-plane distance between the hydrogen atom and the aromatic plane as well as the angle at hydrogen ∠C–H–X. Furthermore, d··· π interactions will be described by the atom-to-plane distance between the aromatic plane as well as the angle at hydrogen ∠C–H–X. Furthermore, d··· π interactions will be described by the atom-to-plane distance between the aromatic plane as well as the angle at hydrogen ∠C–H–X. Furthermore, d··· π interactions will be described by the atom-to-plane distance between the aromatic plane as well as the angle at hydrogen ∠C–H–X. Furthermore, d··· π interactions will be described by the atom-to-plane distance between the aromatic plane as well as the angle at hydrogen ∠C–H–X. Furthermore, d··· π interactions will be described by the atom-to-plane distance between the aromatic plane as well as the angle at the centroid ∠C–X–M.

S4.2: C-H··· π and d··· π interactions for **Cu1**. Due to nitrile group in 3-position the third C-H··· π interaction is unable to form.

S4.4: C–H··· π and d··· π interactions for **Cu3**.

S5.1: The unit cell and packing of **Cu1** supermolecules in the crystal lattice. The intermolecular interactions have been shown as space-fill models and comprise of coordinating bonds that extend the hexamers as infinite polymers through the lattice. Additional C–H···O and H-bonding interactions further facilitate packing of the complex. The voids present in the crystal have also been shown and exist at the corners of the unit cell. The voids occupy 5.5% of the unit cell volume V = 2943.8 Å³.

S5.2: The unit cell and packing of **Cu2** supermolecules in the crystal lattice. The intermolecular interactions have been shown as space-fill models and comprise of coordinating bonds that extend the hexamers as infinite polymers through the lattice along the crystallographic c-axis. Additional C–H··· π and H-bonding interactions further facilitate packing of the complex. There are no voids in the crystal of **Cu2** as the 4-position nitrile packs more efficiently than the 3-position nitrile present on **Cu1**.

S5.3: The unit cell and packing of **Cu3** supermolecules in the crystal lattice. The intermolecular interactions comprise of H-bonding between axially bound aqua ligands and amide carbonyls of neighboring metallocycles. The voids present in the crystal have also been shown and exist as irregular cavities along the unit cell as well as a sphere at the center of the metallocycle. The voids occupy 6.7% of the unit cell volume V = 2793.0 Å³.

S6 CSD

Table S1: CSD results upon submission of the search query. The aryl substitution positions have been labelled on the query structure. Reference codes highlighted in green represent structures that possess H-bond donors on the chelate.

CSD Analysis Copper NNN Amide Pincers						
Search Query	O = N = O = O = O = O = O = O = O = O =					
CSD Reference	Coordination	Charge	Aryl Substitution	Extended		
Code	Number	Charge	Pos.	Structure		
ANICIM	4	Neutral [Cu(III)]	2,6	Monomer		
ANICOS	4	Neutral [Cu(III)]	2,6	Monomer		
ANICUY	4	Anion	2,6	Monomer		
ANIDAF	4	Anion	2,6	Monomer		
ANIDEJ	4	Anion	2,6	Monomer		
AWUNEN	4	Anion	2,6	Monomer		
CATDAG	4	Anion	2,6	Monomer		
CATDEK	4	Neutral [Cu(III)]	2,6	Monomer		
DOWSAM	5	5 Anion		Monomer		
DUVCAA	5	5 Anion		Monomer		
DUVCEE	4	Anion	2,6	Monomer		
EFAFID	5	Neutral	2,6	Monomer		
EFAFOJ	5	Neutral	2,6	Monomer		
EFAKAA	4	Anion	2,6	Monomer		
HIHQEW	5	Neutral	2,6	Monomer		
HIHVIF	4	Anion	2,6	Monomer		
HIYWAQ	4	Anion	2,6	Monomer		
HOCXIJ	4	4 Anion		Monomer		
НОСХОР	4 Anion		2,6	Monomer		
HUCFET	5 Neutral		2	Monomer		
HUTMUH	5	Neutral	2,6	Monomer		
HUTNUI	4	Neutral	2,6	Monomer		
IBEXEU	4	Anion	2,6	Monomer		
IBEXIY	4	Anion	2,6	Monomer		
IBEXOE	4	Neutral	2,6	Monomer		
IBEXUK	4	Neutral	2,6	Monomer		
JOSQAJ	5	Neutral	2	Monomer		
KAJLIT	4	Anion	2,4,6	Monomer		
KAJLOZ	5	Neutral	2,4,6	Monomer		
KAJLUF	5	Neutral	2,4,6	Monomer		
КАЈМАМ	4	Neutral	2,4,6	Monomer		

MEQQEF	5	Neutral	2	Monomer
MIHJEU	4	Anion	2,6	Monomer
MIHJIY	4	Anion	2,6	Monomer
MIJFUI	4	Anion	3	Dimer
MIMDAQ	5	Neutral	2	Dimer
MIMDEU	4	Neutral/Anion	2	Dimer
MIMFIA	4	Anion	2	Dimer
MOWCUZ	5	Anion	2,6	Monomer
OPIHUT	4	Anion	2,6	Monomer
OSIDAW	4	Neutral	2,6	Monomer
QAWQOY	5	Anion	2,6	Monomer
QOCXIS	4	Anion	2	Dimer
QOFLAB	4	Anion	2,6	Monomer
QOFLIJ	4	Anion	2,6	Monomer
QOFLOP	5	Anion	2,6	Monomer
QOFLUV	4	Anion	None	Dimer
QOFMAC	4	Anion	3	Dimer
QOFMEG	4	Anion	2,6	Monomer
QOFMIK	4	Anion	2,6	Monomer
REKYOX	4	Anion	2.6	Monomer
REKYUD	4	Anion	2.6	Monomer
REVOEO	5	Neutral	2	Monomer
SEOZAR	4	Neutral	3	Monomer
SEOZOE	4	Anion	3	Monomer
SEOZUL	4	Anion	3	Monomer
TEGVOT	4	Anion	2,6	Monomer
TEGVUZ	4	Anion	2,6	Monomer
TOZFEW	5	Anion	2,6	Monomer
UGAKOF	4	Anion	2,4,6	Dimer
UGALIA	4	Anion	2,4,6	Monomer
UGALOG	4	Neutral	2,4,6	Monomer
VOLPOD	4	Anion	2	Monomer
VOLPUJ	4	Neutral	2	Dimer
VULDEO	4	Anion	2,6	Monomer
VULDIS	4	Anion	2,6	Monomer
VULDOY	4	Anion	2,6	Monomer
VULDUE	4	Neutral [Cu(III)]	2,6	Monomer
VULFAM	4	Neutral [Cu(III)]	2,6	Monomer
VULFEQ	4	Neutral [Cu(III)]	2,6	Monomer
WOHSIV	4	Anion	None	Dimer
WOHSOB	4	Anion	None	Dimer
XIVGOY	5	Anion	2	Monomer
XIVGUE	5	Anion	2	Monomer
ZAZBUX	5	Neutral	2	Monomer
ZAZCAE	4	Neutral	2	Monomer
ZOFPOZ	4	Neutral	2	Monomer

ZOFPUF	4	Neutral	2	Monomer
Cu1	5	Neutral	3	Hexamer
Cu2	5	Neutral	4	Hexamer
Cu3	5	Neutral	None	Hexamer

Table S2: Crystallographic data.

Crystal Data	Cu1	Cu2	Cu3
Formula	C ₁₂₈ H ₇₈ Cu ₆ N ₃₀ O ₁₆ ,	C ₁₃₀ H ₇₆ Cu ₆ N ₃₂ O ₁₄ ,	C ₁₁₄ H ₈₆ Cu ₆ N ₁₈ O ₁₆ , C ₂ H ₆ O ₂ ,
	1.5[CH₃OH]	4[C ₂ H ₃ N]	5[CH₃OH]
Cell	Triclinic	Triclinic	Triclinic
Space Group	P-1	P-1	P-1
Mr /g mol–1	2721.50	2855.68	2567.52
a / Å	12.8621(7)	14.4764(11)	10.8153(11)
b / Å	14.6778(8)	15.1477(11)	17.0091(16)
c / Å	17.1404(9)	16.4380(10)	17.4196(16)
α/°	76.085(2)	106.667(3)	106.568(5)
β/°	70.053(2)	95.920(3)	100.629(5)
γ/°	81.249(2)	110.424(3)	107.750(5)
Z	1	1	1
V / Å3	2943.8(3)	3152.1(4)	2793.0(5)
Voids / %	5.5	0	11
R1 / %	3.6	4.82	6.8