Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting information

Simple and Efficient Non-doped Deep-Blue and White Organic Light-Emitting Diode Based on Hybridized Local and Charge Transfer (HLCT) Materials

Xiyu Wang^a, Xiaoxia Li^a, Ruihao Yang^a, Huixia Xu^{a,*}, Baoyou Liu^c, Gang Yue^c, Hua Wang^a and

Yanqin Miao^{a,b,c,*}

^aKey Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China

^bShanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China

^cNingxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd., Yinchuan 750003, China

*Corresponding E-mails: miaoyanqin@tyut.edu.cn (Yanqin Miao); xuhuixia@tyut.edu.cn (Huixia Xu)

Section 1

All OLEDs were fabricated on pre-patterned indium tin oxide (ITO) glass substrates with a sheet resistance of 15 Ω sq⁻¹. ITO-coated glass substrates were cleaned by ultrasonic cleaning in deionized water, acetone and isopropyl alcohol for 20 min in order, then treated with ultraviolet-ozone for 15 min. After this, the ITO substrates were leaded into a deposition chamber, and the OLEDs were fabricated through a vacuum evaporation deposition process under a pressure below 5×10^{-4} Pa. The deposition rates and film thicknesses were monitored by calibrated crystal quartz sensors. The deposition rates for the organic materials, LiF, MoO₃ and Al were 1~2, 0.3, 0.5, and 3~6 Å s⁻¹, respectively, in particular, the evaporation rate of Ph-UEMLs is about 0.1 Å s⁻¹. All the devices had an active emissive area of 3 mm×3 mm, which are defined by the overlap between the ITO anode and Al cathode. The current density-voltage-luminance (J-V-L) characteristics were performed simultaneously by using a computer-controlled source meter (Keithley 2400) integrated with a BM-7A luminance meter test system. The EL spectra were recorded by a PR655 spectrometer. The EQE was calculated from the current density-voltage-luminance curves and EL spectral data.

Figure S1. Molecular structures for all organic functional materials used in this work.

Figure S2. Normalized EL spectra for non-doped blue devices B1-B4 at different driving voltages from 5 V to 8

V.

Figure S3. Linear curves of current density-luminance for pCzAnN and TBAN.

Figure S4. Normalized EL spectra for yellow devices Y1-Y4 at different driving voltages from 5 V to 8 V.

Figure S5. Normalized EL spectra for yellow devices Y5-Y7 at different driving voltages from 5 V to 8 V.

Figure S6. (a)-(c) CIE coordinates diagram of non-doped yellow devices Y5-7 at versus voltage and EL photo at 5

V.

Figure S7. (a-c) Normalized EL spectra for white devices W1-W3 at different driving voltages from 5 V to 8 V;

(d) The CIE coordinate graph for white devices W1-W4 at a voltage of 7 V.

EQE (%) Devices CE(cd/A) λ_{EL} (cd/m²) CIE(x,y) Ref. 6.27 9.36 444 (0.151, 0.068)This work pCzAnN 8.96 (0.16, 0.07)**TPATPA-CNPPI** 19.58 457 [24] SP 6.9 11.3 436 (0.158, 0.068)[25] 3.80 5.86 419 (0.16, 0.08)SFCz [26] 6.54 4.63 432 (0.153, 0.054)SAFpCN [27] SAF-PI 2.90 4.57 428 (0.156, 0.053)[28] 5.81 4.61 432 (0.154, 0.059)**IDCz-BPSP** [29] 7.21 11.83 436 (0.15, 0.07)PPITPh [30] PCZPBO 2.8 5.1 414 (0.15, 0.08)[40]

Table S1 Key performance parameters of the reported non-doped non-doped blue based-HLCT OLEDs exhibiting hot excitons process with CIE ≤ 0.08 .

Reference

24. J. Jayabharathi, S. Thilagavathy, V. Thanikachalam and J. Anudeebhana, J. Mater. Chem. C., 2022, 10, 4342-4354.

25. S. Xiao, Y. Gao, R. Wang, H. Liu, W. Li, C. Zhou, S. Xue, S. T. Zhang, B. Yang and Y. Ma, *Chem. Eng. J.*, 2022, **440**, 135911.

26. Y. Zhen, F. Zhang, H. Liu, Y. Yan, X. Li and S. Wang, J. Mater. Chem. C., 2022, 10, 9953-9960.

27. T. Sudyoadsuk, S. Petdee, C. Kaiyasuan, C. Chaiwai, P. Wongkaew, S. Namuangruk, P. Chasinga and V. Promarak, J. Mater. Chem. C., 2021, 9, 6251-6256.

28. C. Kaiyasuan, P. Chasing, P. Nalaoh, P. Wongkaew, T. Suayoadsuk, K. Kongpatpanich and V. Promarak, *Chem. Asian. J.*, 2021, **16**, 2328-2337.

29. J. Wang, X. Zhai, C. Ji, M. Zhang, C. Yao, G. Xie, J. Zhang and X. Xi, Dyes. Pigments., 2023, 219, 111586.

30. C. Du, H. Liu, Z. Cheng, S. Zhang, Z. Qu, D. Yang, X. Qiao, Z. Zhao and P. Lu, *Adv. Funct. Mater.*, 2023, 33, 2304854.

40. M. Xie, T. Li, C. Liu, C. Ma, S. Zhang, G. Liu, Q. Sun, S. T. Zhang, W. Yang and S. Xue, *Chem. Eng. J.*, 2023, **472**, 144950.

Devices	V _{on} ^a (V)	CE ^b (cd/A)	PE ^b (lm/W)	L _{max} (cd/m ²)	CIE ^d (x,y)	CRI ^e
W1	3.5	0.05	0.03	733.5	(0.440,0.426)	58/59
W2	3.9	0.09	0.04	1113	(0.426,0.392)	60/62
W3	4.2	0.12	0.05	1369	(0.415,0.361)	63/66
W4	4.8	0.13	0.05	1379	(0.413,0.346)	65/68

Table S2. The summary of the key EL performance for white devices W5-W8.

^a Turn-on voltage corresponds to the voltage at a luminance of >1 cd m⁻²;

^bmaximum CE/PE;

°CIE coordinates are measured at the voltage of 7 V;

^dCRI is measured at a voltage of 7 V and 8 V.