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Text S1

1.Calculation of adsorption capacity and removal rate. Adsorption capacity Q

(mg P/g) and removal rate n were calculated using the following equations:

\
Q=(C0'Ce)g (1
nZ%XIOO% (2)

0

Where, Cy and C, (mg P/L) is the phosphate concentration in solution before
adsorption and after adsorption, respectively; @ (mg P/g) is adsorption capacity of the
adsorbent; v (mL) is the volume of solution; m (mg) is the mass of adsorbent; # (%) is

removal rate.

2.Calculation of adsorption isotherms. Freundlich and Langmuir isotherm

models were used to fit the experimental data.

Langmuir isotherm adsorption model:

C, C, 1
e tey G
9de  9max (kp 9max )

Freundlich isotherm adsorption model:
1
Ing, = (;)InCe +Inkp 4)

Where C, (mg P/L) and ¢, (mg P/g) represent the solution concentration and
adsorption amount at adsorption equilibrium state; ¢ (mg P/g) represents
adsorption capacity of the adsorbent; k; (L/mg) represents Langmuir adsorption
constant; kr (mg/[g-(mg/L)"]) and 1/n represent Freundlich adsorption constants,

respectively.

3.Calculation of adsorption kinetics. Pseudo-first-order and pseudo-second-

order kinetic models were used to characterize adsorption behaviors.
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Pseudo-first-order dynamic model equation:
In(q. -q,) = Inq, -kt )

Pseudo-second-order dynamic model equations:

q: kzqez 9e
Where ¢, (mg P/g) is the adsorption amount at equilibrium; ¢, (mg P/g) is the
adsorption amount at time #; k; (1/min) is the rate constant of pseudo-first-order

kinetic model; k; (g/(mg-min)) is the rate constant of pseudo-second-order kinetic

model.

4.Calculation of adsorption thermodynamics. Thermodynamic properties
were determined using three thermodynamic data of entropy change (4S), enthalpy

change (4H) and Gibbs free energy (4G). The calculation formula is as follows:

e
C

e

AH A4S
—t—

RT R X

In(=)=

AG=AH -T AS (8)

Where R (8.314 J/mol-K) represents the ideal gas constant, T (K) represents the
absolute temperature; C, (mg P/L) and ¢, (mg P/g) represent the phosphate

concentration and adsorption amount at the adsorption equilibrium state.

5.Calculation of regeneration rate. Regeneration rate is calculated as follows:
R, =" )

Where R, (%) represents regeneration rate of the nth use, ¢, (mg P/g) represents
phosphate adsorption capacity of the adsorbent after the nth use, g (mg P/g) represents

phosphate adsorption capacity of the adsorbent at the first use.



Text S2
1 Experimental section

1.1 Materials

Zinc nitrate hexahydrate (Zn(NO;),-6H,0), aluminum nitrate nonahydrate
(AI(NO3);-9H,0), copper nitrate trihydrate (Cu(NOj),-3H,0), ethylenediamine
(EDA), urea (CH4N,0), potassium dihydrogen phosphate (K,HPQO,), etc. were of
analytical grade and purchased from Xilong Chemical Co., Ltd.. All the experiments
were carried out using deionized water (DI water).
1.2 Relevant instruments and characterization

Oscillatory adsorption using a frozen thermostatic oscillator (HZQ-2).
Centrifugal operation was performed using a desktop high-speed centrifuge (TG16-
WS). The morphology of the adsorbent was observed by scanning electron
microscope (JSM-6010LA) and transmission electron microscope (FEI Tecnai G2
F20). The crystal structure and surface chemical state were determined by powder X-
ray diffractometer (Ultima IV) and X-ray photoelectron spectroscopy (K-Alpha),
respectively. The chemical structure of the adsorbent was recorded on Fourier
transform infrared spectroscopy (NICOLET IS10) by KBr tableting method. The
nanoparticle size and Zeta potential analyzer (Nano ZS90) were used to evaluate Zeta
potential. The automatic surface area and porosity analyzer (ASAP2460) was used to
measure the adsorption-desorption isotherms of N».
1.3 Synthesis of CuZnAl-1%-LDO adsorbents

The chemicals and instruments used in this work are detailed in the supporting
information. The method of urea hydrolysis was used to create ZnAlCu-1%-LDHs,
which were subsequently converted into ZnAlCu-1%-LDO by calcination. 13.84 mL
of 0.5 mol/L zinc nitrate hexahydrate, 2.00 mL of 0.5 mol/L aluminum nitrate
nonahydrate and 0.80 mL of 0.1 mol/L copper nitrate trihydrate were transferred into
a glass bottle, and the solution was mixed with deionized water until it reached 40 mL
(the total molar amount of Zn + Al + Cu was 8 mmol, and the Cu content was 1%).

1585.6 mg urea was added and mixed by ultrasonic for 10 min. After being agitated at
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90 °C for 12 h, the mixture was cooled to room temperature. Then, after three washes
in deionized water. Centrifugation was used to separate the precipitate at 6000 rpm.
The resulting solid was dried at 60 °C to produce the light blue powder. Finally, to
create ZnAlCu-1%-LDO, the light blue powder was calcined at 350 °C for 2 h (5

°C/min programmed heating rate).
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Figure S1. Preparation flow chart of ethylenediamine modified zinc aluminum copper

hydrotalcite
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Figure S3. Zeta potential diagram of ZACen-0.5
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Figure S4. N, adsorption-desorption isotherms of ZACen-0.5 and ZnAlICu-1%-LDO
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Figure S5. TG-DTG curve of ZACen-0.5
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Figure S6. Contact angle test diagram: (a) ZnAlCu-1%-LDO; (b) ZACen-0.5
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Figure S7. (a) The effect of adsorption temperature on the phosphate adsorption

performance of ZACen-0.5; (b) Van 't Hoff graph
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Figure S8.. Adsorption isotherm model: (a) Langmuir model; (b) Freundlich model
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Figure S9. Effect of coexisting anions on phosphate adsorption by ZACen-0.5
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Figure S10. Comparison of phosphate concentration in wastewater before and after

adsorption
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Figurell. Surface precipitation mechanism of ZACen-0.5
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Figure S12. XPS full spectrum of ZACen-0.5 before and after phosphorus adsorption
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Figure S13. Adsorption mechanism of phosphate on ZACen-0.5
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Table S1. Physical parameters of ZACen-0.5 and ZnAlCu-1%-LDO

BET specific Pore volume Pore diameter
Adsorbent 3
surface area (m?/g) (cm’/g) (nm)
ZnAlCu-1%-LDO 69.27 0.1392 28.71

ZACen-0.5 104.61 0.2102 2591
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Table S2. Thermodynamic parameters of phosphate adsorption by ZACen-0.5

Temperature(K ~ AG(KJ/mol) AH(KJ/mol) AS(J/(mol-K)

)
293 -1.73
298 -1.65
303 -1.57 -6.422 -16.014
308 -1.49

313 -1.41
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Table S3. Kinetic model parameters of phosphate adsorption by ZACen-0.5

Experimental Pseudo-first-order Pseudo-second-order

Co Je ki R? Je ks R? Qe
(mg/L) (mg/g) (mg/g) (mg/g)

50 88.18 0.00358 0.8217  36.04 4.019x10* 09987  88.73

100 143.48 0.00416 09478  87.43 1.399x104 0.9972  146.63

200 2212 0.00406 0.9391 131.94 9.177x10° 0.9982  226.24
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Table S4. Adsorption isotherm model parameters

Langmuir Freundlich
Qmax kp R2 kp(mg/[g-(mg/L)""]) 1/n R?
(mg/g) (L/mg)

271.00 0.04777  0.9985 36.29 0.3345 0.9538
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Table S5. The comparison of adsorption properties of adsorbents for phosphate

Adsorbent pH T(°C) Q(mg P/g) Reference
Zr-CaM1 4 25 2237 [1]
Ce-MOF-500(S) 6 25 189.4 [2]
Ce-BC 3 20 77.7 [3]
Mg/Al-LDO 6 30 103.6 [4]
Fe;04/Zn-Al-Fe-La-LDH 4 30 165.9 [5]
ZnAl-LDO-BC 6 45 111.11 [6]
ZnAlCu-1%-LDO 3.5 25 231.48 [7]

ZACen-0.5 35 25 271.00 This work
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