Electronic Supplementary Information

Facile synthesis of CeMnOx catalytic gel with bacterial

microenvironment-responsive antibacterial property

Zicheng Wei^a, Zhihui Niu^{b, *} Huihui Xu^c, Zihao Li^a, Peng Wang^a, Chengfeng Li^a, Guangwu Wen^a, and Xiaowei Li^{a, *}

^aInstitute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China

^bSchool of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China

^cSchool of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China

*Corresponding Author, E-mail: niuzh@sdut.edu.cn(Zhihui Niu); weis.lee@163.com(Xiaowei Li)

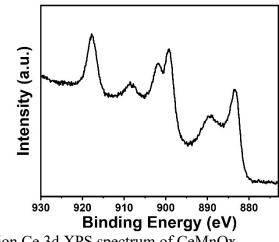


Figure S1. High resolution Ce 3d XPS spectrum of CeMnOx.

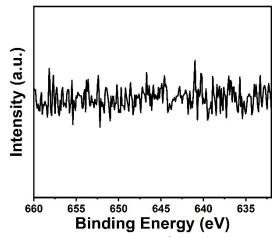


Figure S2. High resolution Mn 2p XPS spectrum of CeMnOx.

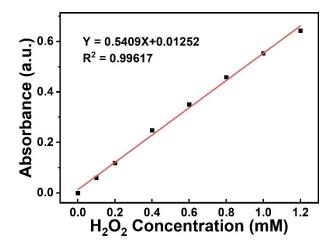
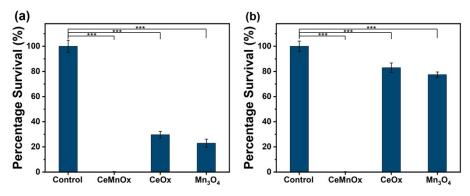



Figure S3. The standard curve of H_2O_2 generation measured by UV-vis at 405 nm.

Figure S4. Relative bacterial viability of (a) *E. coli* and (b) *S. aureus* of bacterial colonies in corresponding treated groups.

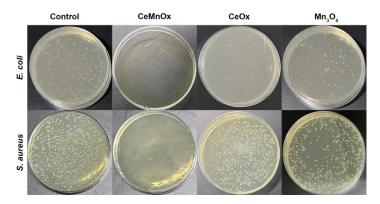


Figure S5. Photographs of bacterial colonies in CeMnOx, CeOx and Mn₃O₄ treated groups.

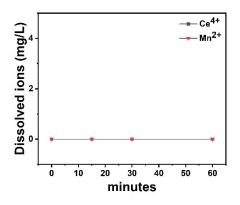
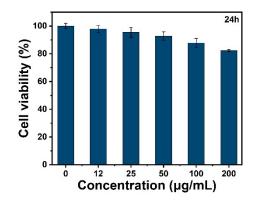



Figure S6. Ion release profiles of Ce4+ and Cu2+ in 1 hour under physiological conditions.

Figure S7. Viability of 3T3 cells treated with varied concentrations of CeMnOx under physiological conditions.