Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Electronic Supplementary Information

Revealing the Influencing Mechanism of CO_2 on SCR of NO_x with NH_3 over FeW Mixed Oxides Catalyst: interactions of carbonate-Fe₂O₃-FeWO₄

Hui Wang, Yujie Qiao, Xiang Li, Zhenping Qu*

Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of

Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road,

Dalian, 116024, China

Fig. S1. The long-term effect of 10 vol.% CO_2 on NO_x conversion over FeW oxides catalyst at 400 °C

Fig. S2. N_2O yield of FeW oxides catalyst in the presence and absence of CO_2

Fig. S3. DRIFT spectrum of CO_2 adsorption at 200 °C on Fe_2O_3 catalyst

1569 cm⁻¹: bidentate carbonate species

1442 cm⁻¹: bicarbonate species

1373, 1353 cm⁻¹: monodentate carbonate species

Fig. S4. XPS spectra of the fresh and CO_2 treatment Fe_2O_3 oxides samples over the spectral regions of $Fe\ 2p$

It shows that the binding energy of Fe 2p is shifted towards higher binding energy when the injection of CO₂. Combined with the results of CO₂ adsorption experiment, it is reasonable to elucidate that the formed CO₃²⁻ species on Fe₂O₃ catalyst can induce the electron cloud densities of Fe³⁺ sites decrease.