Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Fluorescence sensing for chloride ions in water based on wavelength

shifts of hexane-dispersed CsPbBr₃@silicone

Han Wang, WenJing Gao, Yangjie Li, Yang He, Haihu Yu*

National Engineering Research Center of Fiber Optic Sensing Technology and

Networks, Wuhan University of Technology, Wuhan 430070, China

Email: hhyu@whut.edu.cn

Measurement of Cl⁻ concentration in sweat samples by traditional argentometric method

Due to the low sample volume, the collected sweat was diluted 10 times before testing. The 3 mL sample solution and 120 μ L K₂CrO₄ (Indicator) were added in a 10 mL conical flask. The AgNO₃ standard solution (5.000 mM) was slowly added to the conical flask through a burette and the solution was stirred. When the color of the solution changed from clear yellow to stable red, the volume of AgNO₃ was recorded. The concentration of Cl⁻ in the sample was obtained from:

$$C_{cl} = \frac{5.000 \times V_{(AgNO_3)}}{3} \text{ mM}$$

Figure S1 Fluorescence emission spectra of O-PNCs in water, inset show solution colors under natural light and 365 nm UV light, with O-PNCs on the left side and A-PNCs on the right side.

Figure S2 Fluorescence emission spectra of O-PNCs and A-PNCs in ethanol, the inset shows solution colors under 365 nm UV light.

Table S	31 . An o	verview	of recently	reported	nanomaterial-b	pased op	otical m	nethods	for 1	the
determi	nation of	⁻ Cl ⁻ in ad	queous pha	ises.						

Materials used	Solvents for nanomaterials	Fluorescence sensing type	Visual resolution	Response time	LOD	Ref
GQD	Water	Intensity based	Low	5 min	10 mM	[15]
Supramolecular network		Intensity based	Low		24.9 µM	[16]
CsPbBr ₃	Hexane	Wavelength based	High	5 min	3.0 mM	[24]
CsPbBr ₃ -SiO ₂	Ethanol	Wavelength based	High	15 min	0.05 mg/g	[27]
CsPbBr ₃ -OPA	Water	Wavelength based	High	5 min	0.34 mM	[28]
CsPbBr ₃ @CsPb ₂ Br ₅	Water	Wavelength based	High	20 s	3.2 µM	[29]
CsPbBr ₃ -ACD	Ethanol	Wavelength based	High	1 min	3.2 µM	[30]
DUT-101 and Ag ⁺ /Eu ³⁺ @UIO-67		Intensity based	High		0.1 mM	[53]
CsPbBr ₃ -APTMS	Hexane	Wavelength based	High	1 min	0.188 mM	This work

sample	Sample volume (ml)	AgNO ₃ volume (ml)	AgNO ₃ concentration (mM)	Sample Cl ⁻ concentration (mM)	RSD (%)
1	3.000	2.256	5.055	3.801	0.35
2	3.000	1.467	5.055	2.472	0.51

Table S2. Detection of Cl⁻ in sweat based on traditional argentometric method.