Electronic Supplementary Material (ESI) for New Journal of Chemistry.

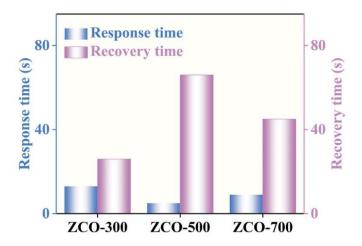
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Electronic Supplementary Information for

Engineering surfaces to improve xylene gas sensing performance in $ZnCo_2O_4$ porous architectures

Chenlu Hu^a, Yanxu Feng^a, Mengying Du^a, Lifang Zhang^a, Rui Jiang^a, Shuangming Wang^{a*}, Jing Cao^{b*}

^aCollege of Physics & Materials Science, Tianjin Normal University, Tianjin 300387, People's Republic of China


^bCollege of Physical Science and Technology, Tiangong University, Tianjin 300387, People's Republic of China

^{*}E-mail: wsm116@tjnu.edu.cn; caojing@tiangong.edu.cn

The preparation process of the target gases: All target gases with specific concentrations were prepared by evaporating a certain amount of corresponding reagent liquid in a 1 L testing bottle. The corresponding reagent liquid was injected into testing bottle by a microsyringe and the injection volume had been calibrated by the following formula:

$$Q = (V \times C \times M)/(22.4 \times d \times \rho) \times 10^{-9} \times (273 + T_R)/(273 + T_B)$$

In which Q was the appropriate liquid volume (mL); V was the volume of the testing bottle (mL); C was the designed concentration of corresponding gas (ppm); M was the molecular weight of the substance (g); d was the purity of the liquid; ρ was the density of the liquid (g/cm³); T_R (°C) and T_B (°C) was the testing environment and working temperature, respectively.

Fig. S1 The response/recovery time of ZCO-300, ZCO-500 and ZCO-700 sensor to 200 ppm xylene gas at 170 °C.