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1. General information

All the chemicals were purchased from the common sources Sigma Aldrich, Acros Organics, Alfa
Aesar, Strem Chemicals, PENTA Chemicals, Cambridge Isotope Laboratories, Inc. Unless
otherwise noted, all of the materials are commercially available and used without further
purifications or prepared by known methodologies. All the reactions were carried out in oven-dried
reaction tubes. Reactions were monitored by thin-layer chromatography (TLC) using Merck silica
gel 60 F254 precoated plates (0.25 mm) and visualized by UV fluorescence quenching using an
appropriate mixture of ethyl acetate and hexanes. All the reactions were carried out in IKA
magnetic stirrers. 'H and 3C NMR spectra were recorded on a Bruker 400 MHz (100 MHz for 13C
and 400 MHz for 'H) instrument. '"H NMR spectra were reported relative to residual CDCl; (8 7.26
ppm) and DMSO-dg (6 2.50 ppm). Whenever the residual peak overlaps with the compound,
spectra are reported as residual TMS. 13C NMR was reported relative to CDCl; (8 77.16 ppm) and
DMSO-dg (6 39.52 ppm). All chemical shifts 6 are reported in ppm. Mass spectrometry was
performed on a Thermo Fisher LTQ Orbitrap XL hybrid FT mass spectrometer with a combination
of ion trap MS and the Orbitrap mass analyser. Infrared spectra were measured in KBr with a
Thermo Nicolet AVATAR 370 FT-IR spectrometer. Unless otherwise stated, the reaction that
requires heating was carried out with the oil bath as the heat source. Solvents used for extraction

and column chromatography were laboratory grade and used after the distillation.



2. Experimental spectral data

2.1. Preparation of the ligand and complex

1-(4-methoxyphenyl)-1H-imidazole (3): A flame-dried round-bottom flask was charged with

NaH (60% in mineral oil, 1 eq., 1.18 g, 29.4 mmol), (which was previously
I\E/\N OOMe rinsed with pentane), imidazole (1 eq., 2.00 g, 29.4 mmol) and DMSO (50

mL). The resulting suspension was stirred at room temperature for 30 minutes

under argon atmosphere. Subsequently, Cul (0.08 eq., 0.47 g 2.4 mmol) and 1-iodo-4-
methoxybenzene (0.8 eq., 5.73 g, 24.5 mmol) were added. The reaction mixture was refluxed at
120 °C for 24 hours. The conversion was checked by TLC (DCM /MeOH = 20:1, visualization
with ninhydrin and AMC). The mixture was allowed to cool to room temperature, then water (50
mL) was added. The crude mixture was extracted with EtOAc (3 x 50 mL). Then, the combined
organic phase was washed with brine (3 x 40 mL), dried over MgSQO,, filtered and evaporated. The
product obtained was purified by column chromatography, on silica gel with a mixture of
DCM/MeOH = 20:1, yielding a deep orange solid (2.76 g, 54%). 'H NMR (400 MHz, CDCls) 6
7.75 (s, 1H), 7.33 — 7.27 (m, 2H), 7.19 (t, 1H, J = 1.2 Hz), 7.17 (t, 1H, J = 1.2 Hz), 7.00 — 6.95
(m, 2H), 3.84 (s, 3H). 3C NMR (101 MHz, CDCl;) 8 159.0, 136.0, 130.9, 130.2, 123.3 (20),
118.9, 115.0 (2C), 55.7. HRMS (ESI+) m/z: Calcd for C;oH;N,O = 175.0866; Found = 175.0872.

3,3'-(ethane-1,2-diyl)bis(1-(4-methoxyphenyl)-1H-imidazol-3-ium) (4): In a thick-wall tube 1-
(4-methoxyphenyl)-1H-imidazole (3) (2 eq., 1.48 g, 3.93

Moo o Toed mmol) and dibromoethane (1 eq., 0.37 mL, 1.97 mmol) were

T E/\NOOMe mixed. The resulting solution was stirred at 100 °C for 40 min,

then it was allowed to cool to room temperature. The formed
pale-brown residue was triturated with THF, sonicated for 1 min and crushed into small pieces
with a spatula. The precipitate was filtered off, washed with THF (2 x 3 mL) and dried in air to
give the ligand B as a white powder (2.08 g, 91%). 'H NMR (400 MHz, DMSO-d®) 4 9.95 —9.90
(m, 1H), 8.27 (t,J = 1.9 Hz, 1H), 7.96 (t, J = 1.8 Hz, 1H), 7.72 (d, J = 9.0 Hz, 2H), 7.20 (d, J =
9.1 Hz, 2H), 4.91 (s, 2H), 3.84 (s, 3H). 3C NMR (101 MHz, DMSO) & 160.07, 135.94, 127.77,
123.49, 123.29, 121.52, 115.15, 55.79, 48.71. Mp: 269 °C. HRMS (ESI): m/z: Calcd for
CnH4N40,77376.1888; Found 2 [M]7:188.0944.
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Silver Complex (5): In a solution of ligand 4 (1.0 eq., 500 mg, 1.33 mmol) in acetonitrile (10 mL)
was added silver(I) oxide (1.15 eq., 355 mg, 1.53 mmol). After stirring the suspension at 50°C

. overnight, brown suspension obtained. Then, the mixture
™Ag /4\
MeO\Q %N/\/N‘\(N‘Q‘OMe was cooled to room temperature and filtered to give a grey
"o
powder, which was then treated with DMF (5mL), sonicated

for 1 min, heated to 50°C, and filtered again. The treatment with DMF (5 mL) was repeated two
times. The combined DMF solutions were concentrated under vacuum to 2 mL, and then diluted
with Et;O (15 mL). The formed precipitate was filtered off, washed with MeOH (4mL), and
acetone (4 mL), and dried in vacuo to give the title product as a white powder (115 mg, 21%),).
M.p. =217 °C. 'H NMR (600 MHz, DMSO-d%) 6 7.72 (d, 2H, J = 1.9 Hz), 7.62 (d, 2H, J = 1.9
Hz), 7.33 (d, 4H, J = 8.3 Hz), 6.91 (d, 4H, J = 8.3 Hz), 4.67 (s, 4H), 3.78 (s, 6H). 3C NMR (151
MHz, DMSO-d®) 6 178.9, 159.1, 132.5, 125.1, 123.2, 122.8, 114.5, 55.6, 51 .4.

2.2.  General procedure for A3-coupling:

General procedure for the A3-coupling reaction (Method A): In an oven-dried reaction tube,
aldehyde (1.5 equiv, 1.5 mmol), amine (1.0 equiv, 1.0 mmol), terminal alkyne (1.5 equiv, 1.5
mmol) were successively added along with Ag-NHC complex (0.5 mol%). The reaction tube was
closed by a teflon screw cap, mixture was flushed with argon before being progressively heated to
80°C under neat conditions and left to stir for 5 h. The reaction was monitored through TLC, and
after the completion of the reaction, the compound was purified directly through silica column
separation of crude product using hexanes and ethyl acetate mixture afforded the corresponding

tertiary propargylamine in good yield.

General procedure for the A3-coupling reaction (Method B): In an oven-dried reaction tube,
aldehyde (1.5 equiv, 1.5 mmol), amine (1.0 equiv, 1.0 mmol), terminal alkyne (1.5 equiv, 1.5
mmol) were successively added along with Ag-NHC complex (0.5 mol%). The mixture was
flushed with argon and 2ml of CHCI; were added. The reaction tube was closed by a teflon screw
cap and allowed to stir for 5 h successively at room temperature. The reaction was monitored using
TLC, and after the completion of the reaction, the compound was purified directly through silica
column separation of crude product using hexanes and ethyl acetate mixture affording the

corresponding tertiary propargylamine.



1-(1cyclohexyl-3-phenylprop-2-yn-1-yl)pyrrolidine (9a): According to general procedure,
0y cyclohexane carboxaldehyde (168 mg, 1.5 mmol), pyrrolidine (142 mg, 1.5

N

- mmol), and phenylacetylene (159 mg, 1.5 mmol) afforded compound 9a (389 mg,
A
U\Q 98%) as a yellow oil. '"H NMR (300 MHz, CDCl) & 7.42 — 7.44 (m, 2H), 7.26 —

7.27 (m, 3H), 3.36 (d, 1H, J = 8.4 Hz), 2.73 — 2.67 (m, 4H), 2.12 (d, 1H, J = 11.1 Hz), 1.98 (d,
1H, J = 11.7 Hz), 1.82 — 1.74 (m, 6H), 1.70 — 1.57 (m, 2H), 1.27 — 1.08 (m, 5H). *C NMR (101
MHz, CDCl;) 6 131.8, 128.3, 127.8, 123.8, 88.0, 85.9, 61.4, 50.2 (2C), 41.5, 30.8, 30.4, 26.8, 26 .4,
26.3,23.7 (2C). The data is in accordance with the one reported in the literature.!

1-(1-cyclohexyl-3-(4-methoxyphenyl)prop-2-yn-1-yl)pyrrolidine (9b): Following the general

) procedure, cyclohexane carboxaldehyde (168 mg, 1.5 mmol), pyrrolidine (106

N

O)\Q\ mg, 1.5 mmol), and 4-methxoyphenylacetylene (198 mg, 1.5 mmol) were used
ome| @s starting substrates, yielding compound 9b (433 mg, 97%) as a yellow oil.

e

Purified by column chromatography using silicagel as stationary phase and a mixture of EtOAc:
Hex (10:90) as eluent; 'H NMR (400 MHz, CDCl3) 6 7.39 (d, J = 8.8 Hz, 2H), 6.84 (d, J = 8.8
Hz, 2H), 3.82 (s, 3H), 3.36 (d, J = 8.3 Hz, 1H), 2.87 — 2.60 (m, 4H), 2.14 — 1.94 (m, 2H), 1.83 —
1.55 (m, 8H), 1.32 — 1.08 (m, 5H). *C NMR (101 MHz, CDCl;) & 159.3, 133.2, 115.9, 113.9,
86.3, 85.6, 61.4, 55.4, 50.2, 41.5, 30.8, 30.4, 26.8, 26.4, 26.3, 23.7. The spectroscopic data is in

accordance with the one reported in the literature.?

1-(3-(4-chlorophenyl)-1-cyclohexylprop-2-yn-1-yl)pyrrolidine (9¢): Following the general

S procedure, cyclohexane carboxaldehyde (168 mg, 1.5 mmol), pyrrolidine (106

N

O)\@ mg, 1.5 mmol), and 4-chlorophenylacetylene (204 mg, 1.5 mmol) were used as
Cl

starting substrates, yielding compound 9¢ (440 mg, 97%) as a yellow oil.

Purified by column chromatography using silicagel as stationary phase and a mixture of EtOAc:
Hex (10:90) as eluent. 'H NMR (400 MHz, CDCl;) 6 7.37 (d, J = 8.5 Hz, 2H), 7.27 (d, J = 8.5
Hz, 2H), 3.36 (d, J = 8.5 Hz, 1H), 2.79 — 2.60 (m, 4H), 2.14 — 1.93 (m, 2H), 1.84 — 1.56 (m, 8H),
1.32 - 1.07 (m, 5H). 3C NMR (101 MHz, CDCl3) & 133.7, 133.0, 128.5, 122.2, 89.1, 84.8, 61.3,
50.1,41.4,30.7,30.4, 26.8, 26.3, 26.3, 23.6. The spectroscopic data is in accordance with the one

reported in the literature.?

1-(3-(4-((tert-butyldimethylsilyl)oxy)phenyl)-1-cyclohexylprop-2-yn-1-yl)pyrrolidine (9d):

) Following the general procedure, cyclohexane carboxaldehyde (168 mg, 1.5

N

X
6
oTBS




mmol), pyrrolidine (106 mg, 1.5 mmol), and tert-butyl(4-ethynylphenoxy)dimethylsilane (348 mg,
1.5 mmol) were used as starting substrates, yielding compound 9d (558 mg, 93%) as a colourless
oil, Purified by column chromatography using silicagel as stationary phase and Ethylacetate: Hex
as eluent; R, 0.40 (10% ethyl acetate in hexanes); '"H NMR (400 MHz, CDCl;) 6 7.33 (d, J = 8.6
Hz, 2H), 6.78 (d, J = 8.6 Hz, 2H), 3.35 (d, J = 8.5 Hz, 1H), 2.79 — 2.61 (m, 4H), 2.17 — 2.05 (m,
1H), 2.00 — 1.92 (m, 1H), 1.84 — 1.75 (m, 6H), 1.70 — 1.52 (m, 2H), 1.31 — 1.12 (m, 5H), 1.00 (s,
9H), 0.21 (s, 6H). 3C NMR (101 MHz, CDCl;) & 155.5, 133.1, 120.2, 116.6, 86.5, 85.7, 61.4,
50.1,41.5,30.8,30.4, 26.8, 26.4, 26.3, 25.8, 23.6, 18.3, -4.3. HRMS (ESI) m/z: [M+H]" Calcd for
C,5H4oNOSI: 398.2873; Found: 398.2873.

1-(1-cyclohexyloct-2-yn-1-yl)piperidine (9e): According to general procedure, cyclohexane

O carboxaldehyde (0.168 g, 1.5 mmol), piperidine (0.128 g, 1.5 mmol), and 1-

N

O)\/\/\ heptyne (0.144 g, 1.5 mmol) afforded compound 9e (83 mg, 20%) as pale-yellow
A

oil. 'H NMR (400 MHz, CDCl;) & 3.06 (dt, J = 8.0, 2.0 Hz, 1H), 2.63 (dt, J =
8.5, 4.1 Hz, 2H), 2.57 — 2.50 (m, 2H), 2.22 — 2.17 (m, 2H), 2.02 — 1.94 (m, 1H), 1.87 — 1.81 (m,
1H), 1.77 - 1.68 (m, 6H), 1.68 — 1.62 (m, 1H), 1.62 — 1.46 (m, 2H), 1.50 — 1.05 (m, 10H), 0.92 —
0.86 (m, 3H). 3C NMR (101 MHz, CDCI3) 6 86.0, 77.8, 64.1 (2C), 50.7, 39.8 (2C), 31.3, 31.2,
30.6, 29.1, 27.0, 26.5 (2C), 26.3, 24.9, 22.3, 18.8 (2C), 14.1. The data is in accordance with the

one reported in the literature.!

1-(1-cyclohexyl-3-phenylprop-2-yn-1-yl)piperidine (9f): Following the general procedure,
O cyclohexane carboxaldehyde (168 mg, 1.5 mmol), piperidine (128 mg, 1.5 mmol),

N

O)\Q and phenylacetylene (153 mg, 1.5 mmol) were used as starting substrates, yielding

compound 9f (329 mg, 78%) as a colourless oil, Purified by column
chromatography using silicagel as stationary phase and Ethylacetate: Hex as eluent (2: 98); R;0.60
(10% ethyl acetate in hexanes); '"H NMR (400 MHz, CDCl3) 6 7.52 — 7.44 (m, 2H), 7.35 — 7.27
(m, 3H), 3.15 (d, J = 9.9 Hz, 1H), 2.77 — 2.57 (m, 2H), 2.54 —2.29 (m, 2H), 2.17 — 2.03 (m, 2H),
1.86 —1.56 (m, 8H), 1.52 — 1.40 (m, 2H), 1.36 — 1.16 (m, 3H), 1.12 - 0.91 (m, 2H). 3C NMR (101
MHz, CDCl;) 6 131.8, 128.3, 127.8, 123.9, 87.8, 86.3, 64.5, 50.9, 39.7, 31.5, 30.6, 26.9, 26.4, 26 .3,

26.2, 24.8. The spectroscopic data is in accordance with the one reported in the literature.!

1-(1-cyclohexyl-3-(4-methoxyphenyl)prop-2-yn-1-yl)piperidine (9g): According to general

O procedure, cyclohexanecarboxaldehyde (0.168 g, 1.5 mmol), piperidine (0.128

N

X
7
oM
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g, 1.5 mmol), and 4-ethynilanisole (0.198 g, 1.5 mmol) afforded compound 9¢g (401 mg, 86%) as
yellow crystalline solid. Purified by column chromatography using silicagel as stationary phase
and Ethylacetate: Hex as eluent (5:95); 'TH NMR (400 MHz, CDCl;) 6 7.39 (d, J = 8.8 Hz, 2H),
6.83 (d, J = 8.8 Hz, 2H), 3.80 (s, 3H), 3.10 (d, J = 9.9 Hz, 1H), 2.70 — 2.59 (m, 2H), 2.46 — 2.36
(m, 2H), 2.17 - 2.01 (m, 2H), 1.83 — 1.74 (m, 2H), 1.67 — 1.53 (m, 5H), 1.50 — 1.41 (m, 2H), 1.34
—1.16 (m, 4H), 1.09 — 0.88 (m, 2H). '3C NMR (101 MHz, CDCl;) § 159.2, 133.1, 116.1, 113.9,
86.2, 86.0, 64.5, 55.3,50.9, 39.7, 31.4, 30.6, 26.9, 26.4 (3C), 26.2, 24.9. The data is in accordance

with the one reported in the literature.*

1-(1-cyclohexyl-3-phenylprop-2-yn-1-yl)azepane (9h): Following the general procedure,
O cyclohexane carboxaldehyde (168 mg, 1.5 mmol), azepane (150 mg, 1.5 mmol),

< and phenylacetylene (153 mg, 1.5 mmol) were used as starting substrates,

: )| yielding compound 9h (365 mg, 82%) as a colourless oil, Purified by column
chromatography using silicagel as stationary phase and Hex as eluent; Ry 0.75

(5% ethyl acetate in hexanes); '"H NMR (400 MHz, CDCls) 6 7.49 — 7.39 (m, 2H), 7.34 - 7.27 (m,
3H), 3.18 (d,J=10.1 Hz, 1H), 2.88 —2.76 (m, 2H), 2.65 — 2.54 (m, 2H), 2.25 — 2.06 (m, 2H), 1.83
—1.57 (m, 11H), 1.58 — 1.46 (m, 1H), 1.35 — 1.15 (m, 3H), 1.07 — 0.86 (m, 2H). *C NMR (101
MHz, CDCl;) 6 131.8, 128.3, 127.6, 124.1, 89.1, 85.0, 65.4, 52.8, 40.9, 31.3, 30.8, 29.4, 27.3, 27.0,

26.4,26.2. The spectroscopic data is in accordance with the one reported in the literature.?

1-(1-cyclohexyl-3-(4-methoxyphenyl)prop-2-yn-1-yl)azepane (9i): Following the general

O procedure, cyclohexane carboxaldehyde (168 mg, 1.5 mmol), azepane (150 mg,

N

O)\CL 1.5 mmol), and 4-methoxyphenylacetylene (198 mg, 1.5 mmol) were used as
OM

e | starting substrates, yielding compound 9i (368 mg, 76%) as a colourless oil,

Purified by column chromatography using silicagel as stationary phase and Hex as eluent; R,0.70
(5% ethyl acetate in hexanes); 'H NMR (400 MHz, CDCls) 6 7.35 (d, J = 8.8 Hz, 2H), 6.81 (d, J
= 8.8 Hz, 2H), 3.80 (s, 3H), 3.13 (d, /= 10.0 Hz, 1H), 2.83 — 2.72 (m, 2H), 2.60 — 2.50 (m, 2H),
2.20 -2.04 (m, 2H), 1.77 - 1.56 (m, 11H), 1.54 — 1.44 (m, 1H), 1.31 — 1.12 (m, 3H), 1.04 — 0.83
(m, 2H). *C NMR (101 MHz, CDCl;) & 159.2, 133.2, 116.3, 113.9, 87.4, 84.7, 65.4, 55.4, 52.8,
41.0, 31.3, 30.8, 29.4, 27.3, 27.0, 26.4, 26.2. HRMS (ESI) m/z: [M+H]" Calcd for C»,H3,NO:
326.2478; Found: 326.2478.



4-(1-cyclohexyl-3-phenylprop-2-yn-1-yl)morpholine (9j): Following the general procedure,
[O] cyclohexane carboxaldehyde (168 mg, 1.5 mmol), morpholine (130 mg, 1.5

i < mmol), and phenylacetylene (153 mg, 1.5 mmol) were used as starting substrates,

: J | yielding compound 9j (290 mg, 68%) as a colourless oil, Purified by column
chromatography using silicagel as stationary phase and Hex: EA (97:3) as eluent; R, 0.65 (10%
ethyl acetate in hexanes); '"H NMR (400 MHz, CDCl3) 6 7.40 — 7.33 (m, 2H), 7.25 - 7.18 (m, 3H),
3.74 — 3.60 (m, 4H), 3.05 (d, J = 9.8 Hz, 1H), 2.69 — 2.57 (m, 2H), 2.49 — 2.37 (m, 2H), 2.08 —
1.91 (m, 2H), 1.74 — 1.53 (m, 4H), 1.16 — 0.83 (m, 5H). 3C NMR (101 MHz, CDCl3) 3 131.8,
128.3, 127.9, 123.5, 86.9, 86.7, 67.3, 64.1, 50.0, 39.2, 31.1, 30.5, 26.8, 26.3, 26.1. The

spectroscopic data is in accordance with the one reported in the literature.!

4-(1-cyclohexyl-3-(4-methoxyphenyl)prop-2-yn-1-yl)morpholine (9k): Following the general

[Oj procedure, cyclohexane carboxaldehyde (168 mg, 1.5 mmol), morpholine
O)N\@ (130 mg, 1.5 mmol), and 4-methoxyphenylacetylene (198 mg, 1.5 mmol) were
one used as starting substrates, yielding compound 9k (278 mg, 59%) as a

colourless oil, Purified by column chromatography using silicagel as

stationary phase and Hex: EA (95:5) as eluent; R;0.60 (10% ethyl acetate in hexanes); 'H NMR
(400 MHz, CDCl;) 6 7.39 (d, J = 8.8 Hz, 2H), 6.84 (d, J = 8.8 Hz, 2H), 3.83 — 3.68 (m, 7H), 3.13
(d,/=9.8 Hz, 1H), 2.79 — 2.65 (m, 2H), 2.57 — 2.46 (m, 2H), 2.17 — 1.99 (m, 2H), 1.83 — 1.55 (m,

4H), 1.30 — 0.93 (m, 5H). *C NMR (101 MHz, CDCls) § 159.3, 133.1, 115.7, 113.9, 86.6, 85.1,
67.3, 64.1, 55.3, 50.0, 39.2, 31.1, 30.4, 26.8, 26.3, 26.1. The spectroscopic data is in accordance

with the one reported in the literature.’

4-(3-(4-((tert-butyldimethylsilyl)oxy)phenyl)-1-cyclohexylprop-2-yn-1-yl)morpholine  (91):

5 Following the general procedure, cyclohexane carboxaldehyde (168 mg, 1.5

(/]

N mmol), morpholine (130 mg, 1.5 mmol), and tert-butyl(4-
O)\Q\ ethynylphenoxy)dimethylsilane (348 mg, 1.5 mmol) were used as starting

OTBS

substrates, yielding compound 91 (319 mg, 51%) as a colourless oil, Purified
by column chromatography using silicagel as stationary phase and Ethylacetate: Hex as eluent
(5:95); R0.50 (10% ethyl acetate in hexanes); 'H NMR (400 MHz, CDCls) 6 7.33 (d, J = 8.6 Hz,
2H), 6.78 (d, J = 8.6 Hz, 2H), 3.84 — 3.68 (m, 4H), 3.13 (d, J/ = 9.8 Hz, 1H), 2.76 — 2.66 (m, 2H),
2.57 =247 (m, 2H), 2.17 — 2.01 (m, 2H), 1.83 — 1.56 (m, 5H), 1.20-1.10 (s, 4H), 1.05-1.10 (s,
9H), 0.21 (s, 6H). 3C NMR (101 MHz, CDCls) 8 155.7, 133.2, 120.2, 116.4, 86.7, 85.3, 67.4,
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64.1, 39.3, 31.1, 30.5, 26.9, 26.3, 26.2, 25.8, 18.4, -4.3. HRMS (ESI) m/z: [M+H]* Calcd for
CysH4oNO,Si: 414.2822; Found: 414.2819.

4-(1-cyclohexyl-3-(2-methoxyphenyl)prop-2-yn-1-yl)morpholine (9m): Following the general
[Oj procedure, cyclohexane carboxaldehyde (168 mg, 1.5 mmol), morpholine (130
! o o mg, 1.5 mmol), and 2-methoxyphenylacetylene (198 mg, 1.5 mmol) were used
: ] | as starting substrates, yielding compound 9m (298 mg, 63%) as a colourless oil,
Purified by column chromatography using silicagel as stationary phase and Hex as eluent; R, 0.60
(10% ethyl acetate in hexanes); 'H NMR (400 MHz, CDCls) 6 7.43 (dd, J = 7.6, 1.8 Hz, 1H), 7.32
—7.23 (m, 1H), 6.96 — 6.84 (m, 2H), 3.89 (s, 3H), 3.84 — 3.61 (m, 4H), 3.21 (d, J = 9.8 Hz, 1H),
2.75 (s, 2H), 2.63 — 2.40 (m, 2H), 2.26 — 2.01 (m, 2H), 1.83 — 1.60 (m, 4H), 1.36 — 1.02 (m, 5H).
BC NMR (101 MHz, CDCls3) 8 160.2, 133.6, 129.3, 120.4, 112.8, 110.8, 91.2, 82.9, 67.4, 64.3,
55.9, 50.0, 39.3, 31.0, 30.5, 26.9, 26.3, 26.2. HRMS (ESI) m/z: [M+H]" Calcd for C5HsNO;:
314.2114; Found: 314.2109.

N-benzyl-1-cyclohexyl-N-methyl-3-phenylprop-2-yn-1-amine (9n): Following the general
procedure, cyclohexane carboxaldehyde (56 mg, 0.5 mmol), N-methyl-1-
O)N/\;‘% phenylmethanamine (61 mg, 0.5 mmol), and phenylacetylene (51 mg, 0.5 mmol)

were used as starting substrates, yielding compound 9n (136 mg, 85%) as a
colourless oil, Purified by column chromatography using silica gel as stationary phase and Hex
as eluent; R, 0.60 (10% ethyl acetate in hexanes); 'H NMR (400 MHz, CDCl3) § 7.56 — 7.48 (m,
2H), 7.46 — 7.25 (m, 8H), 3.76 (d, J = 13.4 Hz, 1H), 3.59 (d, J = 13.4 Hz, 1H), 3.27 (d, J = 10.3
Hz, 1H), 2.40 — 2.20 (m, 4H), 2.20 — 2.11 (m, 1H), 1.84 — 1.61 (m, 4H), 1.36 — 1.16 (m, 3H), 1.06
—0.87 (m, 2H). 3C NMR (101 MHz, CDCl3) 6 139.79, 131.80, 128.91, 128.27, 128.21, 127.77,
126.86, 123.74, 86.96, 86.51, 62.03, 59.49, 40.10, 37.79, 31.37,30.31, 26.76, 26.24, 26.04. HRMS
(ESI) m/z: [M+H]* Calcd for Cp3H,gN: 318.2216; Found: 318.2216. The spectroscopic data is in

accordance with the one reported in the literature.*

1-(1-phenyloct-1-yn-3-yl)pyrrolidine (90): Following the general procedure, hexanal (150 mg,

0 1.5 mmol), pyrrolidine (106 mg, 1.5 mmol), and phenylacetylene (153 mg,
N\J\Q 1.5 mmol) were used as starting substrates, yielding compound 90 (310 mg,
81%) as a pale yellow oil. Purified by column chromatography using silicagel

as stationary phase and a mixture of EtOAc: Hex (10:90) as eluent. R0.50 (20% ethyl acetate in
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hexanes); 'H NMR (400 MHz, CDCl;) 6 7.50 — 7.39 (m, 2H), 7.36 — 7.24 (m, 3H), 3.71 (t, J =
7.3 Hz, 1H), 2.88 —2.63 (m, 4H), 1.86 — 1.32 (m, 12H), 0.97 — 0.86 (m, 3H).!3C NMR (101 MHz,
CDCly) 6 131.8, 128.3, 127.9, 123.6, 88.4, 85.4, 55.3, 49.9, 35.2, 31.8, 26.5, 23.6, 22.7, 14.2. The

spectroscopic data is in accordance with the one reported in the literature.*

1-(4-methyl-1-phenylpent-1-yn-3-yl)pyrrolidine (9p): Following the general procedure,
0 isobutyraldehyde (108 mg, 1.5 mmol), pyrrolidine (108 mg, 1.5 mmol), and

N

% phenylacetylene (153 mg, 1.5 mmol) were used as starting substrates, yielding
compound 9p (306 mg, 90%) as pale yellow oil. Purified by column

chromatography using silicagel as stationary phase and a mixture of EtOAc: Hex (10:90) as eluent;
colourless oil; R;0.70 (20% ethyl acetate in hexanes); 'H NMR (400 MHz, CDCl;) 6 7.51 — 7.40
(m, 2H), 7.38 — 7.25 (m, 3H), 3.36 — 3.21 (m, 1H), 2.84 — 2.59 (m, 4H), 2.01 — 1.77 (m, 5H), 1.19
—1.04 (m, 6H). 3C NMR (101 MHz, CDCl;) 6 131.8, 128.3, 127.9, 123.7, 87.8, 85.8, 62.7, 50.5,
32.0, 23.7(2C), 20.4, 19.6. The spectroscopic data is in accordance with the one reported in the

literature.*

1-(1,3-diphenylprop-2-yn-1-yl)pyrrolidine (9q): According to general procedure, benzaldehyde
(0.160 g, 1.5 mmol), pyrrolidine (0.142 g, 1.5 mmol), and phenylacetylene (0.159

Q g, 1.5 mmol), afforded compound 9q (74 mg, 19%) as pale-yellow oil. '"H NMR
(400 MHz, CDCl3) 6 7.44 (d, J = 7.2 Hz, 2H), 7.51 — 7.49 (m, 2H), 7.39 — 7.28
(m, 6H), 4.89 (s, 1H), 2.70 (s, 4H), 1.81 (s, 4H). 13C NMR (101 MHz, CDCl;) &

139.7, 131.9, 128.4 (3C), 128.4 (4C), 128.2, 127.7, 123.4, 87.0, 59.3, 50.4 (2C), 29.8, 23.6 (2C).

The data is in accordance with the one reported in the literature.?
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3.0. Copies of 'H and '3C spectra
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Figure S 1 '"H NMR spectra of metal complex 3 in CDCl; (400 MHz)
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Figure S 3 '"H NMR

spectra of ligand 4 in D

MSO-d® (400 MHz)
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Figure S7 'H NMR spectra of compound 9a in CDCl; (400 MHz)
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Figure S9 'H NMR spectra of compound 9b in CDCl; (400 MHz)
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Figure S11 'H NMR spectra of compound 9¢ in CDCl; (400 MHz)
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Figure S13 'H NMR spectra of compound 9d in CDCl; (400 MHz)
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Figure S15 'H NMR spectra of compound 9e in CDCl; (400 MHz)
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Figure S17 'H NMR spectra of compound 9f in CDCl; (400 MHz)
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Figure S19 'H NMR spectra of compound 9g in CDCl; (400 MHz)

e e A e

1.447
1.433

NS (s

{-4000

| {3000

{-2000

. g
A o1 oL

{~-1000

7 ) ] ¢ TT T NI T
T T T T T T T T T T T T T T T T T T T T T T T
0.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5
f1 (ppm)
Figure S20 '3C NMR spectra of compound 9g in CDCl; (101 MHz)
I I

— 116.09
— 113872
- 86.164
85936

J

%

T T T T T T T T T T T T T T T T T T
200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
f1 (ppm)

22



Figure S21 'H NMR spectra of compound 9h in CDCl; (400 MHz)
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Figure S23 'H NMR spectra of compound 9i in CDCl; (400 MHz)

N

|~ 6000

{~4000 Q

2000 X
o th m
J ! \ A L&‘x /}K}\N Lo ‘ j\ "
[ — e —— %ﬁ Hﬁ Fﬁ Fﬁ
B T - - T = T T
3.0 25 Z.(l 1.5 1.0
1 (ppm)

w w L S o Ml el
os | 100 95 oo 85 80 75 70 s &0 855 so 45 40| 3s 30 25 20 15| 1o o5 oo
1 (ppm)
Figure S24 13C NMR spectra of compound 9i in CDCl; (101 MHz)
I I Tl v Pon
E % § L I~ 1000
[ /LN
I-800
600 Q
400
- L
| N CHy
| ‘ | | ‘ n s
Lk | | L],
T T T T T T T T T
70 65 60 55 50 45 il 5 30 25
f1{(ppm)

I
" WL ‘u ' T “‘ & NJ e .‘u‘” ur;w ! 4 M y WWL o e il e " :nm Al e

U T T T T T T T T U T T T
200 190 180 170 60 150 14 130 120 1 100 90 80
1 (ppm)

24



Figure S25 'H NMR spectra of compound 9j in CDCl; (400 MHz)
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Figure S27 '"H NMR spectra of compound 9k in CDCl; (400 MHz)
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Figure S29 1H NMR spectra of compound 91 in CDCl; (400 MHz)
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Figure S31 'H NMR spectra of compound 9m in CDCI; (400 MHz)
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Figure S32 13C NMR spectra of compound 9m in CDCl; (101 MHz)
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Figure S33 'H NMR spectra of compound 9n in CDCl; (400 MHz)
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Figure S35 'H NMR spectra of compound 90 in CDCl; (400 MHz)
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Figure S37 1H NMR spectra of compound 9p in CDCl; (400 MHz)
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Figure S39 1H NMR spectra of compound 9q in CDCl; (400 MHz)
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Figure S41 'H NMR spectra of complex 5 with NH4PF4 in DMSO-d® (300 MHz)
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4.0. X-Ray data

The diffraction data for structure determination of 5 were collected on Bruker D8 VENTURE
Kappa Duo PHOTONIII by IpS micro-focus sealed tube CuKo (A= 1.54178 A) at low temperature.
The position of atoms was determined by direct methods (XT)¢ and refined by full-matrix least
squares based on F? (SHELXL20197). The hydrogen atoms on carbon were calculated into
idealized positions (riding model) and assigned temperature factors either Hio(H) = 1.2 Ugq(pivot

atom) or His(H) = 1.5 Ugq (pivot atom) for methyl moiety.

Crystal data for 5, C;H;;AgBrN,0O, M, =375.00; Monoclinic, P2,/c (No 14), a = 15.3550 (11)
A, b=42932(3) A, c=18938(1) A, p=111.204(5)°, V=1163.91 (14)A3,Z=4, D,=2.140
Mg m-3, temperature of sample 120(2) K, colorless needle of dimensions 0.28 x 0.02 x 0.02 mm,
multi-scan absorption correction (u = 17.75 mm) T,,;, = 0.54, T = 0.78; a total of 7588
measured reflections (Op,= 66.9°), from which 2045 were unique (R, = 0.093) and 1339
observed according to the / > 20(/) criterion. The refinement converged (A/Gy.x= 0.001) to R =
0.063 for observed reflections and wR(F?) = 0.148, GOF = 1.01 for 146 parameters and all 2045
reflections. The final difference map displayed no peaks of chemical significance (Appa.x = 1.64,

Apmin -1.61 e. A3,

X-ray crystallographic data have been deposited with the Cambridge Crystallographic Data Centre
under deposition number 2348298 for 5 and can be obtained free of charge from the Centre via its
website (https://www.ccdc.cam.ac.uk/structures/).

34


https://www.ccdc.cam.ac.uk/structures/

- Prob = 50
- Temp = 120
-

o

o

o

<

g Hrl_;; Bril b c-u caLb
£ 0
-t

wn

=~

o

=

2

e

o

S

=

o

P

a

b

o

Z -93 cu_ok _okZ rycek P 21/¢ RES= 0-109 X

Figure S 37 View on part of the infinite chain of 5. The displacement ellipsoids at 50% probability
level.
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