Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supplementary Information

Beyond Telomeric G-quadruplexes: Remarkable Binding of PhenQE8 to Promoter Sequences

Lachhman Singh^{a,†}, Sachin Metangle^a Ratnesh Tiwari^a, and Nihar Ranjan^{a,*}

^aDepartment of Medicinal Chemistry, National Institute of Pharmaceutical Education and

Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, India, 226002

[†]Present Address: Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India 175035 **Spectral Data of Synthesized Compounds**

Figure S1. ¹H NMR spectrum (500 MHz, DMSO-*d*₆) of compound 2

Figure S2. ¹³C NMR spectrum (125 MHz, DMSO- d_6) of compound 2

Figure S3. ESI-HRMS spectrum of compound 2

Figure S4. IR spectrum of compound 2.

gure S5. ¹H NMR spectrum (500 MHz, DMSO- d_6) of PhenQE8.

Figure S6. D₂O Exchange ¹H NMR spectrum (500 MHz, DMSO-*d*₆) of PhenQE8

Figure S7. ¹³C NMR spectrum (125 MHz, DMSO-*d*₆) of PhenQE8.

Figure S8. ESI-HRMS spectrum of PhenQE8.

igure S9. IR spectrum of PhenQE8.

Figure S10. CD thermal melting profile of (a) *Pu22* (b) *BCL2* (c) *c-Myc* (d) 22mer HTG (e) BacG, and (f) TGT in the absence and the presence of PhenQE8 at concentration of DNA and ligands as shown in the graph.

Figure S11. CD-spectroscopy study (a) CD thermal melting profile of AKT1, (b) CD titration profile of AKT1 with PhenQE8.

Figure S12. CD thermal melting profile of Pu22 i-motif in the absence and presence of PhenQE8 at different concentration of DNA and ligand as shown in the graph. Thermal denaturation of DNA sequences was performed from temperature 20-110 °C at a heating rate of 1.0 °C/minute. Melting experiments were performed in buffer 10 mM potassium phosphate, 0.5 mM EDTA, and 100 mM KCl at pH 5.5.

Figure S13. CD thermal melting profile of (a) ds26-duplex (b) dA₃₀.dT₃₀ in the absence and presence of PhenQE8 at different concentration of DNA and ligand as shown in the graph. Thermal denaturation of DNA sequences was performed from temperature 20-110 °C at a heating rate of 1.0 °C/minute. Melting experiments were performed in buffer 2 mM potassium phosphate, 0.1 mM EDTA, and 12 mM KCl at pH 7.0.

Nucleic acids	DNA: Ligand Ratio	PhenQE8	
		T_m (°C)	ΔT_m (°C)
AKT1	Control	50.3	-
	1:1	69.9	19.6
ds26	Control	61.8	-
-	1:1	68.1	6.3
dA ₃₀ .dT ₃₀	Control	38.6	-
-	1:3	40.6	2.0
Pu22 i-motif	Control	33.1	-
-	1:1	38.3	5.2

 Table S1.
 Melting temperature of nucleic acids in the presence and absence of PhenQE8.

Figure S14. UV absorption spectra of compound 1 and PhenQE8 in 2 mM potassium phosphate, 0.5 mM EDTA and 12 mM KCl, having pH 7.0 at 25 °C. Absorption spectra were acquired at compounds concentration of 5 μ M each and recorded between 200-800 nm and relevant data was plotted as absorbance *versus* wavelength plot.

Figure S15. Molecular docking results showing (a) mode of binding and (b) key binding interaction of PhenQE8 with G-quadruplex (PDB ID: 143D).

Figure S16. (a) Fluorescence intercalator displacement experiment of a complex of ds26 duplex DNA:TO (0.5 μ M each) upon incremental addition of PhenQE8 (from 0.5 to 200 equivalents). The experiment was performed in buffer 2 mM potassium phosphate, 0.5 mM EDTA and 12 mM KCl having pH 7.0 at 20 °C. TO was excited at 501 nm and the emission spectrum was recorded between 510-700 nm.

Figure S17. Scatchard plot analysis for determining the apparent binding constant (K_a). The K_a can be calculated as the slope of plot between $\theta/[L]$ and θ . Where θ is ratio of change in UV-visible absorption upon binding to G-quadruplex DNA at saturation. i.e., $\theta = \Delta X/(\Delta X)_T$. where, X is the absorbance of PhenQE8 at 341 nm and $(\Delta X)_T$ the observed change at saturation.

Figure S18. Imino proton region of the 1D ¹H NMR titration spectrum of G-quadruplex with PhenQE8. The bases of *Pu22* G-quadruplex upon addition of two equivalent PhenQE8, with clear perturbation are indicated in red and those with possibility of shift/merge are marked in black. Assay was performed in 10 mM KH₂PO₄ buffer (100 mM KCl, 10% D₂O, pH 7.4) at 25 °C. The final concentration of G-quadruplex DNA was 1 mM.