Supporting Information

OEEFs Precisely Regulating the Propane Oxidation Reaction Catalyzed by O-Fe- Corrolazine

Cheng-Cheng Song, Lei Yang, Wei Yang, Xian Bai, Jin-Xia Liang*, Haiyan Wang*, and Chun Zhu*

School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China.

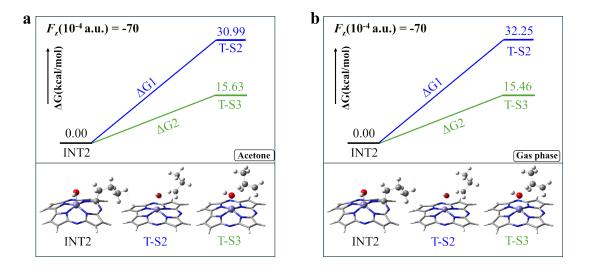


Fig. S1. The energy profile of the rate-determining steps for propane selective oxidation catalyzed by O-Fe Corrolazine with F_{z1} (10⁻⁴ a.u.) of -70 in gas phase and acetone solvents, which are the OH transfer step for propanol Δ G1 and the second dehydrogenation step for propylene Δ G2.

Table S1. The relative energies (kcal/mol) in gas phase and acetone solvent without OEEFs.

	Species					
	R-C	T-S1	INT1	INT2	T-S2	T-S3
Gas phase	0.00	21.34	11.06	-19.56	13.38	6.80
Acetone	0.00	22.50	11.98	-18.14	10.17	6.06

Table S2. The calculated energy barriers (kcal/mol) of propane oxidation reaction in gas phase and acetone solvent with the $F_{\rm z1}$ (10⁻⁴ a.u.) of -70.

$F_{\rm z1}(10^{-4}~{\rm a.u.})$		Free energy (kcal/mol)		
		acetone	gas phase	
70	ΔG1	30.99	32.55	
-70	$\Delta G2$	15.63	15.46	