Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Ixora coccinea flowers derived green luminescent carbon quantum dots for Fe³⁺ recognition and preparation of Pd nanoparticles for the Suzuki-Miyaura coupling and cyanation process

Namrata Priyadarshini Hota and Sathiyanarayanan Kulathu Iyer*

Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, India. *E-mail: sathiyanarayanank@vit.ac.in

Table of Contents:

1. Quantum Yield Measurement	· S1
2. HRTEM Images of NCQD	Figure S1
3. Different wavelength and PH of NCQD	-Figure S2
4. Preparation of Blood sample	S2
5. Time response and Calibration plot of NCQD with Fe ³⁺	Figure S3
6. Quenching mechanism of NCQD upon addition of Fe ³⁺	Figure S4
7. Comparison Table of different sensors for Fe ³⁺ detection	Table S1
8. Plausible mechanism for Suzuki and Cyanation Reaction	Figure S5
9. Optimization Table for Suzuki-Miyaura Reactions	Table S2
10. Optimization Table for Aryl Cyanation Reactions	Table S3
11 Comparison table of PdNPs for Suzuki-Miyaura reaction	Table S4
12. Comparison table of PdNPs for Aryl Cyanation reaction	Table S5
13. Recyclability of PdNPs	S3
14. Recyclability of PdNPs 3 cycle	Figure S6
15. H ¹ NMR analysis of Suzuki-Miyaura Reaction	S4
16. H ¹ NMR analysis of Aryl Cyanation Reaction	S 5
17. H ¹ NMR spectra (400 MHz) of the products	S6

S1 Quantum Yield Measurement:

Using quinine sulfate (ϕ = 0.54 in 0.1M H₂SO₄) as a standard reference, we determined the quantum yield of carbon dots. Using the following formula, the quantum yield was determined.

$$\Phi_{CQD} = \Phi_{R} \times \frac{ICQD}{IR} \times \frac{AR}{ACQD} \times \frac{\eta 2CQD}{\eta 2R}$$

The carbon dot and reference are denoted by CQD and R, respectively, in the equation above. " ŋ " indicates the refractive index of the solvent medium (ethanol has a refractive index of 1.37), "I" stands for the integrated fluorescence intensity, and "A" for the absorbance value at the exiting wavelength. After calculating every value, the quantum Yield was found to be **43.5%**.

Figure S1. HRTEM Images of NCQD

S2 Preparation of Blood sample for real-time application:

A healthy donor's blood was collected. To the blood sample, the same amount of 20% of ascorbic acid was added. The ascorbic acid's function in the blood sample changes Fe²⁺ to Fe³⁺. Following a 15-minute heating period at 90 degrees Celsius, the solution was centrifuged at 4000 RPM after reaching

room temperature. To obtain the precise value, the supernatant was treated with buffer solution (pH=7) and then exposed to the real-time application to detect Fe³⁺.

Figure S3. (a)Time response of NCQD with Fe³⁺ (b) Calibration plot of NCQD with different concentrations of Fe³⁺ (0-8 μm).

Figure S4. Schematic representation of the Quenching mechanism of NCQD upon the addition of Fe³⁺ ions

Table S1: Comparisor	Table of different senso	rs for Fe ³⁺ detection:
-----------------------------	--------------------------	------------------------------------

Sensing Probe for Fe ³⁺	Linear range (^{µm})	Lod (^{µm})	Ref.
Mint leaf-derived Carbon quantum dots	0-50	0.37	[RSC advances, 2019, 9, 12070- 12077]
CQD from Pear juice	0-0.38	1.27	[Scientific reports, 2019, 9, 15084]

Catharanthus roseus leaves CQD	1-6	0.8	[Sustainable materials and technologies, 2020, 23, e00138]
Nitrogen-doped Tea Leaves CQD	0.1-400	0.079	[Nanomaterials, 2022, 12, 986]
Nitrogen-doped Ixora coccinea flowers CQD	1-8	0.06	This work

Figure **S5.** (a) Plausible mechanism of Aryl Cyanide Reactions and (b) Plausible mechanism of PdNPs catalyzed Suzuki-Miyaura coupling reactions

Table S2: Optimization table for Suzuki Miyaura coupling reactions:

SI. No	Solvent	Base	Temp (°C)	Pd(mol%)	Time(h)	Yield (%)
1	H ₂ O	K ₂ CO ₃	50	0.3	2	30
2	DMF	K_2CO_3	50	0.3	2	25
3	Acetone	K ₂ CO ₃	50	0.3	2	Trace
4	Acetonitrile	K_2CO_3	50	0.3	2	Trace
5	Toluene	K ₂ CO ₃	50	0.3	2	20
6	1,4-Dioxane	K ₂ CO ₃	50	0.3	2	30
7	EtOH	K ₂ CO ₃	50	0.3	2	51
8	THF	K_2CO_3	50	0.3	2	Trace
9	1,4-Dioxane: H ₂ O	K ₂ CO ₃	50	0.3	2	45
10	EtOH: H ₂ O: Toluene	K_2CO_3	50	0.3	2	60
11	EtOH: H ₂ O	K_2CO_3	50	-	2	NR
12	EtOH: H ₂ O	-	40	0.3	2	Trace
13	EtOH: H ₂ O	KOH	50	0.3	2	90
14	EtOH: H ₂ O	NaOH	50	0.3	2	89
15	EtOH: H ₂ O	Na ₂ CO ₃	40	0.3	2	90
16	EtOH: H ₂ O	K ₂ CO ₃	50	0.3	2	95
17	EtOH: H ₂ O	K ₂ CO ₃	40	0.3	1.5	94
18	EtOH: H ₂ O	K_2CO_3	40	0.5	1.5	94
10 11 12 13 14 15 16 17 18	EtOH: H_2O : Toluene EtOH: H_2O EtOH: H_2O EtOH: H_2O EtOH: H_2O EtOH: H_2O EtOH: H_2O EtOH: H_2O EtOH: H_2O EtOH: H_2O EtOH: H_2O	$K_{2}CO_{3}$ $-$ KOH $NaOH$ $Na_{2}CO_{3}$ $K_{2}CO_{3}$ $K_{2}CO_{3}$ $K_{2}CO_{3}$	50 50 40 50 50 40 50 40 40	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	2 2 2 2 2 2 2 1.5 1.5	80 NR Trace 90 89 90 95 94 94

Reaction conditions: Aryl halide (1 eq), boronic acid (1.15 eq), base (2 eq), PdNPs (0.3 mol% respect to the aryl halide), solvent (EtOH: H_2O (1:1) (5ml)) in a Nitrogen atmosphere. NR= No Reaction, Yield (%)- Isolated yield after separation by column chromatography

Table S3: Optimization table for aryl halide cyanation reactions:

Sl. No	Solvent	Base	Temp (°C)	Pd(mol%)	Time(h)	Yield (%)
1	H ₂ O	Na ₂ CO ₃	110	0.5	5	50
2	DMF: H ₂ O	Na ₂ CO ₃	110	0.5	5	55
3	Acetone	Na ₂ CO ₃	50	0.5	5	Trace
4	Acetonitrile	Na ₂ CO ₃	90	0.5	5	40
5	Toluene	Na ₂ CO ₃	110	0.5	5	20
6	EtOH: H ₂ O	Na ₂ CO ₃	110	0.5	5	25
7	EtOH	Na ₂ CO ₃	70	0.5	5	Trace
8	THF	Na ₂ CO ₃	110	0.5	5	20
9	DMF	K ₂ CO ₃	110	0.5	5	75
10	DMF	-	110	0.5	5	Trace
11	DMF	K ₂ CO ₃	110	-	5	NR
12	DMF	Na ₂ CO ₃	110	-	5	NR
13	DMF	NaOH	110	0.5	5	70
14	DMF	КОН	110	0.5	5	65
15	DMF	Na ₂ CO ₃	110	0.5	4	94
16	DMF	Na ₂ CO ₃	110	0.5	3.5	93

Reaction conditions: Aryl halide (1 eq), K_4 [Fe (CN)₆] $3H_2O$ (0.18 eq.), Na_2CO_3 (1.5 eq.) PdNPs (0.3 mol% respect to the aryl halide), solvent (DMF (6ml)) in a Nitrogen atmosphere, **Yield (%)**- Isolated yield after separation by column chromatography.

Table S4 Comparison table of catalytic activity of PdNPs for Suzuki-Miyaura coupling reaction:

Sl.	Catalvat	Salvant	Temperature	Time	Yield	Defenences	
No	Catalyst	Solvent	(°C)	Time	(%)	Kelerences	
1	PdNPs@CAP	Solvent-free	MW, 400 W	6 min	92	[International journal of biological macromolecules, 2020, 148, 565-573.]	
2	Pd@C-dots	H ₂ O	60	6h	93	[Dalton Transactions, 2013, 42, 13821-13825]	
3	Cellulose@NHC- Pd	EtOH: H ₂ O	Room Temp.	30 min	95	[Cellulose, 2023, 30, 7551-7573]	
4	PdNPs/TMC	H ₂ O	80	14h	99	[RSC Advances, 2015, 5, 27533- 27539]	

5	Pd NPs	EtOH: H ₂ O	Room Temp.	3h	93	[Applied Organometallic Chemistry, 2019, 33, e4758]
6	PdNPs	EtOH: H ₂ O	40	1.5 h	94	This Work

Ta	bl	e S	35	С	omparis	on	table	of	cataly	tic	activity	y of	PdNPs	for	Ar	vl	Cv	vanation	react	tion:
																/				

Sl.	Catalyst	Solvent	Temperature	Time	Yield	Doforonoos	
No	Catalyst	Solvent	(°C)	(h)	(%)	Kelefences	
1	Pd NPs@Fe ₃ O ₄ / lignin/chitosan	DMF	MW, 400 W	6	92	[International journal of biological macromolecules, 2020, 155, 814-822]	
2	Pd@CC ²	DMF	140	15	90	[Journal of the American Chemical Society, 2016, 138, 1709- 1716]	
3	Pd NPs	DMF	120	7	85	[Catalysis Letters, 2018, 148, 1562-1578.]	
4	TZ-IL@Pd NPs	DMF	120	24	88	[Journal of Organometallic Chemistry, 2022, 970, 122359]	
5	Pd@CuFe ₂ O ₄	DMF	120	7	97	[Journal of Molecular Catalysis A: Chemical, 2015, 397, 106-113]	
6	PdNPs	DMF	110	3.5	93	This Work	

S3 Recyclability of PdNPs:

The reaction mixture was transferred to a centrifuge tube once the reaction was finished and allowed to cool to room temperature. The PDNPS that had sunk to the bottom of the reaction mixture was then repeatedly cleaned with water, ethanol, and acetone after the reaction mixture had been centrifuged for 10 minutes at 4000 RPM. following which it was ground into a fine powder and let it to dry in an oven. Thereafter, the catalyst was utilized for the reactions once more.

Figure S6. Recyclability of PdNPs, 3rd time recycled after Suzuki-Miyaura and Aryl Cyanation Reaction

S4 H¹ NMR analysis result of Suzuki-Miyaura coupling Reaction:

Biphenyl (Table 3. Sl No. 1 and 2): Colourless Crystals. H¹ NMR (400 MHZ, CDCl₃), δ (PPM) = 7.60 (d, J=8Hz, 4H), 7.44 (t, J= 7.2Hz, 4H), 7.35 (t, J=7.5 Hz, 2H).

2. 4-Phenylbenzaldehyde (Table 3. Sl No. 3 and 4): Light yellow Crystals. H¹ NMR (400 MHZ, CDCl₃), δ (PPM)= 9.99 (s, 1H), 7.89 (d, J= 8.4Hz, 2H), 7.70 (d, J= 8.4Hz, 2H), 7.58 (d, J= 7.2Hz, 2H), 7.43 (t, J=7.2Hz, 2H), 7.36 (t, J=7.2, 1H).

3. 4-Cyanobiphenyl (Table 3, Sl No. 5): white crystalline Powder. H¹ NMR (400 MHZ, CDCl₃), δ' (PPM)= 7.74 (d,J= 8.4 Hz, 2H),7.69 (d, J= 8Hz, 2H), 7.60 (d, J=7.2 Hz, 2H), 7.50 (t, J= 7.2 Hz, 2H), 7.44 (m,1H).

4. 4-Cyanophenyl benzaldehyde (Table 3, Sl No. 6): White Powder. H¹ NMR (400 MHZ, CDCl₃), δ (PPM)= 10.09 (s, 1H), 8.01 (d, *J*= 8Hz, 2H), 7.77 (m, 6H).

5. 4-Acetylbiphenyl (Table 3, Sl No. 7, 8): White powder. H¹ NMR (400 MHZ, CDCl₃), δ (PPM)= 8.03 (d, J = 8.0 Hz, 2H), 7.68 (d, J = 8.0 Hz, 2H), 7.63 (d, J = 7.6 Hz, 2H), 7.48 (m, 2H), 7.41 (m, 1H), 2.62 (s, 3H).

6. 4-phenyl-1,8-naphthalic anhydride (Table 3, Sl No. 9): White powder. H¹ NMR (400 MHZ, CDCl₃), δ (PPM)= 8.69 (t, J = 7.6 Hz, 2H), 8.38 (d, J= 7.6Hz, 1H), 7.78 (t, J= 7.6 Hz, 2H), 7.58 (m, 3H), 7.52 (m, 2H).

7. 1,1'-biphenyl]-4-yl(phenyl)methanone (Table 3, Sl No. 10): Off White powder. H¹ NMR (400 MHZ, CDCl₃), δ (PPM)= 7.91 (d, J= 8.4Hz, 2H), 7.85 (d, J= 7.2Hz,2H), 7.72 (d, J= 8Hz, 2H), 7.66 (d, J= 7.6Hz, 2H), 7.62 (t, J= 7.2 Hz, 1H), 7.50 (m,4H), 7.42 (t, J= 7.2Hz, 1H).

8. 4'-hydroxy-[1,1'-biphenyl]-4-yl) (phenyl)methanone (Table 3, Sl No. 11): White powder. H¹ NMR (400 MHZ, DMSO), δ (PPM)= 9.77 (s, 1H), 7.79 (t, J= 8.4Hz, 6H), 7.71 (t, J= 7.2Hz, 2H), 7.63 (m, 4H), 6.69 (d, J= 8.4Hz, 2H).

9. 4'-benzoyl-[1,1'-biphenyl]-4-carbaldehyde (Table 3, Sl No. 12): White powder. H¹ NMR (400 MHZ, CDCl₃), δ (PPM)= 10.09 (s, 1H), 8.01 (d, J= 8Hz, 2H), 7.94 (d, J= 8Hz, 2H), 7.85 (m, 4H), 7.64 (t, J= 7.6Hz, 1H), 7.53 (t, J= 7.6Hz, 2H).

S.5 H¹ NMR analysis result of Cyanation Reaction:

1. Benzonitrile (Table 4, Sl No. 1, 2): Colourless liquid. H¹ NMR (400 MHZ, CDCl₃), δ (PPM)= 7.59 (m, 3H), 7.44 (t, *J*= 7.6Hz, 2H).

2. 4-Formylbenzonitrile (Table 4, Sl No. 3, 4): White crystal. H¹ NMR (400 MHZ, CDCl₃), δ (PPM)= 10.01 (s, 1H), 8.01 (m, 2H), 7.87 (t, *J*= 8Hz, 2H).

3. 4-benzoyl benzonitrile (Table 4, Sl No. 5): Off-white Powder. H¹ NMR (400 MHZ, CDCl₃), δ (PPM)= 7.89 (d, J= 8.4Hz, 2H), 7.80 (m, 4H), 7.66 (t, J= 7.6Hz, 1H), 7.58 (t, J= 7.6Hz, 2H).

5. *1,4-Dicyanobenzene (*Table 4, Sl No. 6): Off-white crystals. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.97 (s, 4H)

6. 4-Aminobenzonitrile (Table 4, Sl No. 7): Light brown crystal. H¹ NMR (400 MHZ, CDCl₃), δ (ppm)= 7.39 (d, J= 8Hz, 2H), 6.61 (d, J= 8Hz, 2H), 6.14 (s, 2H).

7. *4-Acetylbenzonitrile* (Table 4, Sl No. 8,9): Off White Crystal. H¹ NMR (400 MHZ, CDCl₃), δ (ppm)= 8.05 (d, *J*= 8, 2H), 7.79 (d, *J*= 8, 2H), 2.65 (s, 3H).

