Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

for

Designing a multifunctional AIE active fluorescent Schiff base probe: Sensitive heavy metal ions recognition and water induced aggregation

Heena,^a Sudhanshu Naithani,^a Sangeeta,^b Biswajit Guchhait,^b Tapas Goswami,^{a*} Sushil Kumar^{a*}

^aDepartment of Chemistry, Applied Science Cluster, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.

^bDepartment of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India.

Email: sushilvashisth@gmail.com; tgoswami@ddn.upes.ac.in

Fig. S1. FT-IR spectrum of AnQn.

Fig. S2. ¹H NMR spectrum of AnQn in DMSO-*d*⁶ at room temperature.

Fig. S3. ESI-MS of AnQn in CH₃CN solution at room temperature.

Fig. S4. Absorption and emission spectra of AnQn in CH₃CN solution.

Fig. S5. Theoretically determined absorption spectra of (a) AnQn (b) AnQn -Al³⁺ and (c) AnQn -Ga³⁺.

Table S1. Comparison of experimentally	determined	and theoretically	calculated at	osorption
bands				

Ar	ıQn	AnQn-Al ³⁺		nQn-Al ³⁺ AnQn-Ga ³⁺		
Exp. λ _{max} (nm)	Theo. λ _{max} (nm)	Exp. λ _{max} (nm)	Theo. λ _{max} (nm)	Exp. λ _{max} (nm)	Theo. λ _{max} (nm)	Transition s
245	238	252	233	252	233	Quin $_{\pi-\pi^*}$
261	272		272		268	Quin _{n- π*}
335	328	339	307	336	307	Anth $_{\pi-\pi^*}$
360-410	471	355-400	421	355-376	421	ICT
		485	564	490	562	LMCT

Fig. S6. Photographs of CH₃CN solutions of **AnQn** in presence of different metal ions under UV light illumination.

Fig. S7. Benesi-Hildebrand plots for determination of binding constant values for (a) AnQn- Al^{3+} and (b) AnQn- Ga^{3+} adducts.

Fig. S8. Job's plot analysis for (a) AnQn-Al³⁺ and (b) AnQn-Ga³⁺.

Fig. S9. ESI-MS of AnQn-Al³⁺ in CH₃OH solution.

Fig. S10. ESI-MS of AnQn-Ga³⁺ in CH_3CN solution.

Fig. S11. FT-IR spectra of AnQn in presence of Al³⁺ and Ga³⁺ ions.

Fig. S12. ¹H NMR titration of AnQn in presence of Al^{3+} (0-1.0 eq.).

Fig. S13. ¹H NMR titration of AnQn in presence of Ga³⁺ (0-1.0 eq.).

Fig. S14. Energy optimized structures of **AnQn** and its complexes **AnQn**-Al³⁺ and **AnQn**-Ga³⁺. Color code: C (dark gray), N (blue), H (white), O (Red), Al (light pink), Cl (green) and Ga (light pink).

Table S2. Theoretically calculated selected bond parameters in complexes $AnQn-Al^{3+}$ and $AnQn-Ga^{3+}$.

AnQn-Al ³⁺		AnQn-Ga ³⁺		
N _{imine} -Al- N _{quino}	79.42016°	N _{imine} -Ga- N _{quino}	81.16566	
N _{imine} -Al	2.18038 Å	N _{imine} -Ga	2.083438 Å	
N _{quino} -Al	2.08508 Å	N _{quino} -Ga	2.10987 Å	

Fig. S15. Electrostatic potential maps (ESPs) of **AnQn**, **AnQn**-Al³⁺ and **AnQn**-Ga³⁺ calculated using the B3LYP/6-311G(d,p) basis set.

Fig. S16. Reversibility cycle of AnQn with (a) Al³⁺ and EDTA, and (b) Ga³⁺ and EDTA.

Fig. S17. Effect of pH on the fluorescence intensity of AnQn.

Real Sample	Al ³⁺ added (µM)	Al ³⁺ detected (µM)	% Recovery	
Tap water	3.33	3.26	97.8	
	6.67	6.8	101.9	
	10	10.05	100.5	
Soil water	3.33	3.18	95.4	
	6.67	6.42	96.2	
	10	10.02	100.2	

Real Sample	Real SampleGa ³⁺ added (µM)		% Recovery	
Tap water	5	4.87	97.4	
	10	10.06	100.6	
	15	14.64	97.6	
Soil water	5	4.98	99.6	
	10	9.91	99.1	
	15	15.03	100.2	

Fig. S18. Test strips of **AnQn** treated with different metal ions under (a) visible light and (b) UV light illuminations.

Fig. S19. Plot of RGB values (Blue/Green channel) and concentration of Al³⁺ for determination of detection limit using paper strips.

Fig. S20. Effect of different solvents on (a) absorption and (b) emission features of AnQn.

Solvent	$\lambda_{absorption}$	$\lambda_{emission}$	$\lambda_{absorption}$ - $\lambda_{emission}$	Stoke Shift
	(nm)	(nm)	(nm)	(cm ⁻¹)
Diethyl ether	332	473	141	70921.99
Dichloromethane	338	487	149	67114.09
Tetrahydrofuran	336	486	150	66666.67
Chloroform	340	470	130	76923.08
Methanol	336	492	156	64102.56
N,N'-Dimethylformamide	339	501	162	61728.40
Dimethylsulfoxide	340	508	168	59523.81

 Table S5. Effect of solvent's polarity on optical characteristics of AnQn.

Table S6. Time-resolved fluorescence parameters of AnQn with increasing water fractions.

Sample	τ ₁ (ns)	τ_2 (ns)	τ_{av} (ns)	χ^2
AnQn (in ACN)	1.82	9.79	6.89	1.06
AnQn (30% water)	19.39	-	19.39	1.039
AnQn (40% water)	21.17	-	21.17	1.025
AnQn (50% water)	23.32	-	23.32	1.062
AnQn (60% water)	25.17	-	25.17	1.018
AnQn (70% water)	23.93	-	23.93	1.025

Fig. S21. TRF data of AnQn in acetonitrile with varied water fractions from 70%-90%.

Fig. S22. (a) Energy optimized structures of AnQn and (b) HOMO-LUMO energy levels of AnQn.

Fig. S23. Change in emission spectral intensity of **AnQn** (1.0 μ M) in presence of various metal ions (3.0 μ M) in (CH₃CN: H₂O, 4:6, v/v). Inset: Visual color changes observed upon addition of Pd²⁺ under UV as well as visible light.

Fig. S24. Benesi-Hildebrand plot for determination of binding constant of AnQn-Pd²⁺.

Fig. S25. Plot of RGB values (Blue/Red channel) and concentration of Pd²⁺ for determination of detection limit in solid state.

Fig. S26. Bar diagram showing changes in PL intensity of **AnQn** in presence of different nitroaromatic compounds (*o*-NP: *ortho*-nitrophenol; *m*-NP: *meta*-nitrophenol; *p*-NP: *para*-nitrophenol; 2,4-DNP: 2,4-dinitrophenol and PA: picric acid).

Fig. S27. (a) Absorption and (b) fluorescence titration curves of AnQn with picric acid (PA).

Fig. S28. Stern-Volmer plot for quenching of AnQn upon successive addition of picric acid.

Fig. S29. Discriminative fluorescence sensing of PA over Pd²⁺ ions using EDTA as a masking agent.

Fig. S30. Absorption and emission spectra of Na₂PdCl₄ and AnQn aggregates.

Fig. S31. Plausible mechanistic pathway for fluorescence quenching of aggregated AnQn with Pd^{2+} and picric acid.

Real Sample	Pd ²⁺ added (µM)	Pd ²⁺ detected (µM)	% Recovery
Tap water	8.33	8.26	99.15
	16.66	17.05	102.3
	25	24.39	97.56
River Water (S1)	8.33	7.05	84.63
	16.66	17.04	102.28
	25	22.6	90.4
River Water (S2)	8.33	8.32	99.8
	16.66	17.1	102.64
	25	22.19	88.7
Soil Water	8.33	8.2	98.7
	16.66	16.95	101.74
	25	23.9	95.6

Table S7. Determination of Pd^{2+} in different samples of water using emission study.

Fig. S32. Fluorescence detection of Pd²⁺ in different water samples on paper strips.

Table S8. Comparison of sensing parameters of probe **AnQn** with some previously reported probes.

Probe	Target ion	LoD (nM)	Binding constant	Application	Ref.
Но СН3	Al ³⁺	5860	$1.44 \times 10^3 \mathrm{M}^{-1}$	Paper strips Polystyrene Films	[1]
OH N	Ga ³⁺	5960	$1.25 \times 10^2 M^{-2}$		
HO CH ₃	Al ³⁺	4640	$7.68 \times 10^3 \text{ M}^{-1}$	Paper strips	
× ×				Polystyrene Films	[1]
	Ga ³⁺	3400	$1.27 \times 10^2 \text{ M}^{-2}$		
	Al ³⁺	1460	$6.66 \times 10^3 M^{-1}$	Paper strips	
он ссел	Ga ³⁺	1250	1.43 x 10 ³ M ⁻²	Polystyrene Films	[1]
	Al ³⁺	2.4	$1.4 \times 10^5 \mathrm{M}^{-1}$	-	
	Ga ³⁺	2.4	$1.0 imes 10^5 \mathrm{M}^{-1}$		[2]

HC=N H3CS	Al ³⁺ Ga ³⁺	12.5 1600	$1.81 \times 10^{6} \mathrm{M^{-1}}$ $1.64 \times 10^{4} \mathrm{M^{-1}}$	Logic gate Paper strip Cell imaging	[3]
	Al ³⁺ Ga ³⁺	28 29	_	Paper strip Real sample analysis	[4]
	Al ³⁺	190	$3.58 \times 10^4 \mathrm{M}^{-1}$	Paper strips	[5]
	Ga ³⁺ Ga ³⁺	220 1310	$2.80 \times 10^4 M^{-1}$ $2.24 \times 10^3 M^{-1}$		
	Al ³⁺	4510	$3.95 \times 10^4 \text{M}^{-1}$	Paper strips Smartphone	[6]
	Ga ³⁺	8260	1.09 x 10 ⁴ M ⁻¹	Cell imaging	
	Al ³⁺	61.2	$1.00 \times 10^9 \mathrm{M}^{-1}$	Logic gate Paper strips	[7]
N V	Ga ³⁺	201	$2.70 \times 10^{11} \mathrm{M}^{-1}$	Cell imaging	

	Al ³⁺	48.6	$1.21 \times 10^{10} \mathrm{M}^{-2}$	Real samples	[8]
но	Ga ³⁺	20	$9.78 \times 10^8 \text{M}^{-2}$		
N=CH	Al ³⁺	9.2	6.46 x 10 ⁵ M ⁻¹	Logic gates Paper strips	
	Ga ³⁺	230	1.09 x 10 ⁵ M ⁻¹	Real sample analysis	Present study

References:

- V. Kumar, P. Kumar, S. Kumar, D. Singhal, R. Gupta, Inorg. Chem. 58 (2019) 10364– 10376.
- [2] H. Kim, K.B. Kim, E.J. Song, I.H. Hwang, J.Y. Noh, P.G. Kim, K.D. Jeong, C. Kim, Inorg. Chem. Commun. 36 (2013) 72–76.
- [3] Heena, V. Yadav, S. Saini, P. Roy, S. Layek, T. Goswami, S. Kumar, Chempluschem 89 (2024) e202300721.
- [4] S. Ghosh, P. Roy, Anal. Methods 15 (2022) 17–26.
- [5] H. Goyal, V. Kumar, A.K. Saini, G. Kedawat, B.K. Gupta, R. Gupta, Mater. Today Chem. 27 (2023) 101306.
- [6] Q. Liu, Y. Liu, Z. Xing, Y. Huang, L. Ling, X. Mo, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 287 (2023) 122076.
- [7] S. Mishra, P. Mamidi, S. Chattopadhyay, A.K. Singh, J. Photochem. Photobiol. A Chem. 434 (2023) 114225.
- [8] X. Guo, H. Han, Y. Xing, G. Zhang, J. Mol. Liq. 388 (2023) 122719.