Supporting Information

Photoinduced decarboxylative radical cascade alkylation/cyclization of benzimidazole derivatives with aliphatic carboxylic acid via ligand-to-iron charge transfer.

Yan Xu ‡, ChenJing Wang ‡, Chun Lv, Jianjie Wang, Qian Zhang, Jiayang Wang, Run-Pu Shen, Bin Sun * and Can Jin *

Page S1 General Information
Page S2-S3 Preparation of Substrate
Page S4 General procedure for radical cascade cyclization.
Page S4 Gram-scale synthesis
Page S5 Late-stage modification
Page S6 Optimization of the reaction conditions
Page S7 Control experiments
Page S8 KI-starch test
Page S9-S10 UV-vis experiments
Page S11-S12 GC-MS experiments
Page S13-S25 Characterization Data for the products
Page S26-S60 Copies of NMR Spectra
I. General Information

1H NMR spectra were recorded at 400 MHz using TMS as internal standard. 13C NMR spectra were recorded at 100 MHz using TMS as internal standard. All chemical shifts were reported as δ values (ppm) relative to TMS and observed coupling constants (J) are given in Hertz (Hz). All NMR solvents used in this study are CDCl$_3$. GC-Mass spectra were recorded on Agilent GC-MS (8890-7250). High-resolution mass spectra were obtained with a Bruker Impact II UHR-QTOF by ESI on a TOF mass analyzer. The UV-Vis measurements were carried out using a UV-Vis spectrophotometer (ULN 2209003, MAPADA P6). The thin layer chromatography (TLC) was performed using glass plates covered with SiO$_2$. Spots were visualized by UV light irradiation or by staining of the TLC plate with iodine. Unless otherwise indicated, all reactions were carried out under air atmosphere at room temperature with magnetic stirring. All reagents were purchased from commercial source and without prior purification. Column chromatography was performed on silica gel (200-300 mesh) and the elution was performed with n-hexane/ethyl acetate.

The Material of the Irradiation Vessel
Manufacturer: Shenzhen Kelo Light Co., Ltd.
Irradiation wavelength: 400 nm

Figure S1. light setup
II. Preparation of substrate

General procedure for the synthesis of N-sulfoylpiperidinic acid derivatives

Piperidine 4-carboxylic acid (646 mg, 5.00 mmol, 1.0 eq) was stirred with potassium carbonate (970 mg, 7.0 mmol, 1.4 eq) in water (5 mL) at room temperature until a clear solution was obtained. Solution of benzene sulfonyl chloride (6.5 mmol, 1.3 equiv) in THF (5 mL) was added with the aid of a dropping funnel within 15 min. After stirring for 15 min, the cooling bath was removed and the reaction mixture was stirred for 24 h. After that, the reaction mixture was diluted with EtOAc (20 mL) and 2 N HCl (20 mL). Then, poured into an extraction funnel, the organic phase was washed with brine (1 x 20 mL), dried over Na₂SO₄ and concentrated under reduced pressure. Dry the residues in high vacuo to obtain the corresponding product.

General procedure for the synthesis of hyodeoxycholic acid derivative.

Hyodeoxycholic acid (20.0 g, 51 mmol, 1 equiv.) was added into methanol (100 mL) and stirred at room temperature for 5 min. After all dissolved, sulfuric acid (2.5 mL) was slowly added into the reaction solution and the reaction was carried out for 18 hours at room temperature under nitrogen atmosphere. The mixture was concentrated to obtain yellow oil, which was extracted by ethyl acetate. After that, saturated NaHCO₃ solution was added to adjust the pH to neutral and washed combined organic layers with brine. The organic phase was concentrated to obtain 1 (20.7 g, 99%).

1 (10.2 g, 25 mmol, 1 equiv.), TsCl (14.1 g, 75 mmol, 3 equiv.), DMAP (0.305 g, 2.5 mmol, 0.1 equiv.) were dissolved in pyridine (50 mL). The mixture was placed in an ice bath and stirred for 48 hours under nitrogen atmosphere. Subsequently, 250 mL 10 % HCl was added to the solution and then the white solid was precipitated, filtered under reduced pressure. The filter cake was washed with 5% HCl to neutral, and dried to obtain 2 (17.85 g, 99%).

2 (7.1 g, 10 mmol, 1 equiv.), KOH (0.729 g, 13 mmol, 1.3 equiv.) was dissolved in MeOH (50 mL). The mixture was stirred for 16 h at room temperature. Concentrated under reduced pressure. The mixture was purified by silica gel column to obtain 3 (6.8 g, 98%).
General procedure for the synthesis of N-sulfoylpiperidinic acid derivatives3,4

\[
\text{R}_1\text{NH}_2 + \text{R}_2\text{C}=\text{O} \xrightarrow{\text{Na}_2\text{S}_2\text{O}_5, \text{ethanol, 78 }\text{°C}} \text{R}_1\text{N}=\text{R}_2\text{NH}_2
\]

Add o-phenylenediamine (1) (10 mmol, 1.0 equiv.), Na\textsubscript{2}S\textsubscript{2}O\textsubscript{5} (15 mmol, 1.5 equiv.), and ethanol (30 mL) to a 100 mL round-bottomed flask. Then introduce benzaldehyde (2) (10 mmol, 1.0 equiv.) into the reaction mixture, and heat it to 78 °C under reflux conditions. Upon completion of the reaction, cool the reaction mixture to room temperature and pour it into ice water, leading to the formation of yellow solid precipitates. Filter the precipitate and wash it with an appropriate amount of water to obtain the crude product of 2-arylbenzimidazole (3). This crude product can be utilized directly for subsequent reactions without requiring further purification. If solid precipitation does not occur upon stirring in the ice water bath, extract the reaction mixture with ethyl acetate three times. Combine the organic layers, dry them with anhydrous sodium sulfate, filter, and concentrate the solution under reduced pressure. Purify the crude product by silica gel column chromatography using petroleum ether/ethyl acetate (5:1) as the eluent.

The 100 mL round-bottom flask was cooled to 0°C, and a solution containing crude product (3) (5 mmol, 1.0 equiv.), DMAP (2.0 mmol, 0.4 equiv.), and Et\textsubscript{3}N (10 mmol, 2.0 equiv.) in DCM (30 mL) was prepared. Subsequently, methyl acryloyl chloride (10 mmol, 2.0 equiv.) was added dropwise with stirring to the reaction mixture. Once the addition was complete, the reaction mixture was allowed to warm to room temperature and stirred while monitoring the progress via TLC analysis. Following completion of the reaction, the mixture was subjected to extraction thrice with dichloromethane and saturated NH\textsubscript{4}Cl solution. The combined organic layer was then dried over Na\textsubscript{2}SO\textsubscript{4}, concentrated under reduced pressure, and purified via silica gel column chromatography, yielding the corresponding white solid product (4).
III. General procedure for decarboxylative cascade cyclization.

![Chemical Structure](image)

Procedure: To a dried 8 mL vial was added 1 (0.3 mmol), acid (2) (0.6 mmol), Fe(NO$_3$)$_3$·9H$_2$O (10 mol %), in 3 mL CH$_3$CN under air atmosphere. The resulting solution was stirred under 400 nm LED light for 10 h (25 ℃). After that, the reaction mixture was diluted with DCM. Then, poured into an extraction funnel, the organic phase was dried over Na$_2$SO$_4$ and concentrated under reduced pressure. Purification by flash column chromatography with PE/EA as an eluent gave the product.

IV. Gram-scale synthesis.

![Chemical Structure](image)

Procedure: In a dry 100 mL round-bottom flask was added 2-methyl-1-(2-phenyl-1H-benzo[d]imidazol-1-yl) prop-2-en-1-one (5 mmol), pivalic acid (10 mmol), Fe(NO$_3$)$_3$·9H$_2$O (10 mol%) in 20 mL CH$_3$CN under air atmosphere. The resulting solution was stirred for 12 h at room temperature under 400 nm LED lights. On completion, the resulting solution was diluted with H$_2$O (50 mL) and DCM (30 mL). Then, poured into an extraction funnel, the organic phase was dried over Na$_2$SO$_4$ and concentrated under reduced pressure. Purification by flash column chromatography with PE/EA (20/1) as eluent gave the target compound as white solid (2.229 g, 70% yield). (Figure S2)

Figure S2. Gram scale synthesis
V. Late-stage modification.

Procedure: In a dry 100 mL round-bottom flask was added 3aa (1 mmol), LiAlH₄ (2 mmol) in 10 mL THF under air atmosphere. The resulting solution was stirred for 45 min at 0°C. On completion, the resulting solution was diluted with H₂O (20 mL) and EA (20 mL). Then, poured into an extraction funnel, the organic phase was dried over Na₂SO₄ and concentrated under reduced pressure to give the 3bh as white solid (310.8 mg, 97% yield).

3bh (310.8 mg, 0.97 mmol), 4-tert-butylbenzoic acid (178.2 mg, 1 mmol), DCC (412.2 mg, 2 mmol), DMAP (12 mg, 0.1 mmol) was dissolved in DCM (15 mL). The mixture was stirred for 5 h at room temperature. Concentrated under reduced pressure. The mixture was purified by silica gel column to obtain 3bi (433.6 mg, 93%).
VI. Optimization of the reaction conditions

Table S1. Iron salts and additive screening

<table>
<thead>
<tr>
<th>Entry</th>
<th>Deviation from standard conditions</th>
<th>Yield<sup>b</sup> (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>Fe(acac)<sub>3</sub> as PC</td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>Fe (SO<sub>4</sub>)<sub>3</sub> as PC</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>Fe (OTf)<sub>3</sub> as PC</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>20 mol % of Fe (NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O</td>
<td>83</td>
</tr>
<tr>
<td>6</td>
<td>t-BuOK (20 mol %) as additive</td>
<td>80</td>
</tr>
<tr>
<td>7</td>
<td>K<sub>2</sub>CO<sub>3</sub> (20 mol %) as additive</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>Et<sub>3</sub>N (20 mol %) as additive</td>
<td>29</td>
</tr>
<tr>
<td>9</td>
<td>100 mol % of t- BuONa</td>
<td>72</td>
</tr>
</tbody>
</table>

^a Conditions: 1a (0.4 mmol), 2a (0.2 mmol.), Fe (NO₃)₃·9H₂O (10 mol%), additive (20 mol %), CH₃CN (2 mL), room temperature, air atmosphere, 400 nm LEDs, 10 h. ^b Determined by 1HNMR spectroscopy using 1,3,5-trimethoxybenzene as internal standard.

Table S2. Other parameter screening

<table>
<thead>
<tr>
<th>Entry</th>
<th>Deviation from standard conditions</th>
<th>Yield<sup>b</sup> (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>DCE as solvent</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>DMF as solvent</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>EtOAc as solvent</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>370 nm light instead of 100W Blue LEDs</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>435 nm light instead of 100W Blue LEDs</td>
<td>52</td>
</tr>
<tr>
<td>7</td>
<td>475 nm light instead of 100W Blue LEDs</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>Dark conditions</td>
<td>n.d.</td>
</tr>
<tr>
<td>9</td>
<td>No Fe (NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O</td>
<td>n.d.</td>
</tr>
<tr>
<td>10</td>
<td>Nitrogen atmosphere</td>
<td>trace</td>
</tr>
</tbody>
</table>

^a Conditions: 1a (0.4 mmol), 2a (0.2 mmol.), Fe (NO₃)₃·9H₂O (10 mol%), additive (20 mol %), CH₃CN (2 mL), room temperature, air atmosphere, 400 nm LEDs, 10 h. ^b Determined by 1HNMR spectroscopy using 1,3,5-trimethoxybenzene as internal standard. n.d. No detected.
VII. Control experiments

The reaction was completely inhibited by free radical inhibitors, and the radical adducts was detected by HRMS ([M+H]$^+$ = 214.2144)

![Chemical structures and reactions](image)

Figure S3. HRMS data of TEMPO adduct
VIII. KI-starch test for the detection of hydrogen peroxide (H$_2$O$_2$) in the reaction5

It was anticipated that H$_2$O$_2$ may be one of the reasonable by-products of the photo-induced decaboxylative cascade reaction, which was confirmed by KI/starch test.

After the irradiation of light on reaction mixture, the aqueous solution of starch-potassium iodide was added and the solution turns dark blue, which confirms the formation of H$_2$O$_2$. (Figure S4)

Solution A: KI (0.05M), starch (4 mg/mL), and glacial acetic acid (0.5 M) in 2 mL H$_2$O

Solution B: Reaction mixture after irradiation.

Solution C: Add 100uL solution B to solution A.

Figure S4 KI-starch test
IX. UV-visible absorption Spectra

UV-Vis experiments were performed to analyse the ligand-to-metal-charge-transfer (LMCT) process between Iron salt and alkyl carboxylic acids.

Preparation of a stock solution (solution A): In a glass vial equipped with a teflon-coated stirring bar and a septum, Fe(NO$_3$)$_3$·9H$_2$O (0.03 mmol) were dissolved in MeCN (3 mL). Dilute 66 µL of the above solution to 6 mL to obtain solution A.

Preparation of a stock solution (solution B): In a glass vial equipped with a teflon-coated stirring bar and a septum, Fe(NO$_3$)$_3$·9H$_2$O (0.03 mmol) and Pivalic acid (0.3 mmol) were dissolved in MeCN (3 mL). Dilute 200 µL of the above solution to 6 mL to obtain solution B.

UV-Visible absorption spectra of solution A

![UV-Visible absorption spectra of solution A](image)

Figure S4 UV-Visible spectra of a solution of Fe(NO$_3$)$_3$·9H$_2$O without acid after irradiation with 400 nm LED light.

As shown in Figure S4, there is little change in absorbance as the irradiation time increases without the addition of acid.
Figure S4 UV-Visible spectra of a solution of Fe(NO$_3$)$_3$·9H$_2$O with pivalic acid after irradiation with 400 nm LED light.

When the 400 nm LED was switched-on, the absorbance of FeII (λ_{absorb}=400-600 nm) gradually increases, which demonstrated that in the presence of carboxylic acid, the FeIII was reduced to FeII after gradually increasing the illumination time. Concurrently, FeII is gradually oxidized to FeIII in the presence of oxygen, which accounts for the relatively slow increase in absorbance.
X. GC-MS experiment.

The substance identified by gas chromatography-mass spectrometry analysis at RT=1.56-1.57 is carbon dioxide (CO$_2$).
Preparation of a stock solution: In a glass vial equipped with a teflon-coated stirring bar and a septum, 2-methyl-1-(2-phenyl-1H-benzo[d]imidazol-1-yl)prop-2-en-1-one (0.3 mmol, 1.0 equiv.) Fe(NO₃)₃·9H₂O (0.03 mmol, 10 mol%) and Pivalic acid (3 mmol, 10.0 equiv.) were dissolved in MeCN (3 mL).

Reference:
XI. Characterization Data for the products

![Chemical Structure](3aa)

3aa

5-methyl-5-neopentylbenzo [4,5] imidazo[2,1-a] isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (78.3 mg, 82% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.52 (d, $J = 8.8$ Hz, 1H), 8.42 (d, $J = 7.2$ Hz, 1H), 7.85 (dd, $J = 7.7$, 1.5 Hz, 1H), 7.59 – 7.41 (m, 5H), 2.66 (d, $J = 14.3$ Hz, 1H), 2.19 (d, $J = 14.3$ Hz, 1H), 1.73 (s, 3H), 0.56 (s, 9H).

13C NMR (101 MHz, Chloroform-d) δ 173.40, 149.76, 144.08, 142.00, 131.45, 131.13, 127.60, 127.53, 125.92, 125.85, 125.51, 122.44, 119.72, 115.79, 55.33, 47.68, 33.03, 32.01, 30.78.

(Known compound: Chem Asian J. 2023, e202300028 (3 of 5)).

![Chemical Structure](3ab)

3ab

3-(tert-butyl)-5-methyl-5-neopentylbenzo [4,5] imidazo[2,1-a] isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (94.4 mg, 84% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.46 – 8.38 (m, 2H), 7.86 – 7.81 (m, 1H), 7.57 – 7.50 (m, 2H), 7.49 – 7.40 (m, 2H), 2.68 (d, $J = 14.4$ Hz, 1H), 2.20 (d, $J = 14.4$ Hz, 1H), 1.73 (s, 3H), 1.40 (s, 9H), 0.55 (s, 9H).

13C NMR (101 MHz, Chloroform-d) δ 173.79, 154.55, 149.90, 144.05, 141.37, 131.37, 125.80, 125.72, 125.30, 124.97, 124.52, 119.62, 119.54, 115.75, 55.08, 47.82, 35.22, 33.27, 31.98, 31.09, 30.83.

HRMS: C_{25}H_{31}N_{2}O [M+H]$^+$; calculated: 375.2436, found: 375.2433.

![Chemical Structure](3ac)

3ac

3-methoxy-5-methyl-5-neopentylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (84.7 mg, 81% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.45 (dd, $J = 8.7$, 1.7 Hz, 1H), 8.38 (d, $J = 7.7$ Hz, 1H), 7.80 (d, $J = 7.7$ Hz, 1H), 7.42 (dt, $J = 15.3$, 7.5 Hz, 2H), 7.09 – 6.97 (m, 2H), 3.93 (s, 3H), 2.64 (d, $J = 14.6$ Hz, 1H), 2.14 (d, $J = 13.6$ Hz, 1H), 1.72 (s, 3H), 0.59 (s, 9H).

13C NMR (101 MHz, Chloroform-d) δ 173.44, 162.08, 149.93, 144.16, 144.06, 131.33, 127.83, 125.77, 125.04, 119.30, 115.65, 115.41, 113.57, 113.13, 55.56, 55.41, 47.79, 33.24, 32.07, 30.83.

(Known compound: Chem. Commun, 2019, 55, 2861-2864).
5-methyl-5-neopentyl-6-oxo-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline-3-carbonitrile
Purification by flash column chromatography (eluent: PE/EA = 10/1) gave the title compound as white solid (79.3 mg, 77% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.62 (d, $J = 8.1$ Hz, 1H), 8.46 – 8.37 (m, 1H), 7.91 – 7.81 (m, 2H), 7.75 (d, $J = 8.1$ Hz, 1H), 7.55 – 7.47 (m, 2H), 2.70 (d, $J = 14.5$ Hz, 1H), 2.16 (d, $J = 14.5$ Hz, 1H), 1.75 (s, 3H), 0.56 (s, 9H).

13C NMR (101 MHz, Chloroform-d) δ 171.98, 147.66, 143.95, 142.87, 131.69, 131.38, 130.71, 126.63, 126.41, 126.35, 120.30, 118.09, 115.95, 114.46, 55.38, 47.66, 32.88, 32.08, 30.83.

(Known compound: Chem. Commun, 2019, 55, 2861-2864).

3-bromo-5-methyl-5-neopentylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one
Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (95.4 mg, 80% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.45 – 8.36 (m, 2H), 7.86 (d, $J = 6.8$ Hz, 1H), 7.71 – 7.61 (m, 2H), 7.50 – 7.44 (m, 2H), 2.67 (d, $J = 14.6$ Hz, 1H), 2.15 (d, $J = 14.6$ Hz, 1H), 1.73 (s, 3H), 0.59 (s, 9H).

13C NMR (101 MHz, Chloroform-d) δ 172.57, 147.66, 143.95, 142.87, 131.69, 131.38, 130.71, 126.63, 126.41, 126.35, 120.30, 118.09, 115.95, 114.46, 55.38, 47.66, 32.88, 32.09, 30.84.

(Known compound: Synlett, 2023, 34, 143-148).

5-methyl-5-neopentyl-3-phenylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one
Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (94.7 mg, 80% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.61 (d, $J = 8.6$ Hz, 1H), 8.43 (dd, $J = 7.7$, 1.6 Hz, 1H), 7.91 – 7.86 (m, 1H), 7.75 – 7.72 (m, 2H), 7.69 – 7.66 (m, 2H), 7.54 (dd, $J = 8.3$, 6.6 Hz, 2H), 7.50 – 7.44 (m, 3H), 2.72 (d, $J = 14.4$ Hz, 1H), 2.28 (d, $J = 14.4$ Hz, 1H), 1.79 (s, 3H), 0.62 (s, 9H).

13C NMR (101 MHz, Chloroform-d) δ 173.46, 149.60, 144.11, 142.40, 140.07, 131.38, 129.08, 128.33, 127.21, 126.76, 126.54, 126.29, 126.02, 125.64, 121.06, 119.62, 115.83, 55.30, 47.87, 33.21, 32.10, 30.91.

HRMS: C$_{27}$H$_{27}$N$_3$O [M+H]$^+$; calculated: 395.2123, found: 395.2125.
1,5-dimethyl-5-neopentylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (80.8 mg, 81% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.49 – 8.43 (m, 1H), 7.91 – 7.85 (m, 1H), 7.48 – 7.44 (m, 2H), 7.43 – 7.40 (m, 2H), 3.10 (s, 3H), 2.65 (d, $J = 14.4$ Hz, 1H), 2.18 (d, $J = 14.4$ Hz, 1H), 1.74 (s, 3H), 0.56 (s, 9H).

13C NMR (101 MHz, Chloroform-d) δ 173.69, 150.03, 144.18, 143.09, 139.69, 130.88, 130.60, 129.84, 125.61, 125.59, 125.55, 121.09, 120.02, 115.91, 55.77, 47.52, 33.63, 32.06, 30.80, 24.82.

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (80.5 mg, 76% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.50 – 8.39 (m, 1H), 8.01 – 7.91 (m, 1H), 7.63 – 7.37 (m, 5H), 2.67 (d, $J = 14.4$ Hz, 1H), 2.17 (d, $J = 14.4$ Hz, 1H), 1.75 (s, 3H), 0.57 (s, 9H).

13C NMR (101 MHz, Chloroform-d) δ 172.57, 147.11, 144.94, 143.97, 133.44, 131.17, 130.60, 130.30, 126.44, 126.26, 125.88, 120.70, 115.84, 55.90, 47.84, 33.49, 32.05, 30.78.

HRMS: C$_{21}$H$_{22}$ClN$_2$O $[M+H]^+$; calculated: 353.1421, found: 353.1418.

2-bromo-5-methyl-5-neopentylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (94.1 mg, 79% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.67 (d, $J = 2.2$ Hz, 1H), 8.43 – 8.36 (m, 1H), 7.88 – 7.82 (m, 1H), 7.65 (dd, $J = 8.5$, 2.2 Hz, 1H), 7.51 – 7.43 (m, 2H), 7.40 (d, $J = 8.5$ Hz, 1H), 2.65 (d, $J = 14.4$ Hz, 1H), 2.14 (d, $J = 14.4$ Hz, 1H), 1.70 (s, 3H), 0.57 (s, 9H).

13C NMR (101 MHz, Chloroform-d) δ 172.80, 148.28, 143.84, 140.78, 134.11, 131.17, 129.33, 128.52, 126.14, 125.99, 124.22, 121.66, 119.93, 115.84, 55.13, 47.58, 32.98, 32.06, 30.89.

HRMS: C$_{21}$H$_{22}$BrN$_2$O $[M+H]^+$; calculated: 397.0916, found: 397.0912.
3aj

7-methyl-7-neopentylbenzo[g]benzo[4,5]imidazo[2,1-a]isoquinolin-6(7H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (88.4 mg, 80% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.69 (d, $J = 8.6$ Hz, 1H), 8.63 (d, $J = 8.5$ Hz, 1H), 8.47 – 8.42 (m, 1H), 8.01 – 7.88 (m, 3H), 7.66 – 7.57 (m, 2H), 7.53 – 7.45 (m, 2H), 3.10 (d, $J = 14.7$ Hz, 1H), 2.89 (d, $J = 14.7$ Hz, 1H), 2.14 (s, 3H), 0.43 (s, 9H).

13C NMR (101 MHz, Chloroform-d) δ 174.85, 150.27, 144.29, 138.39, 135.99, 131.60, 131.25, 130.25, 129.76, 127.01, 126.37, 126.11, 125.66, 122.69, 121.04, 119.75, 115.84, 53.43, 50.14, 32.30, 30.88, 30.15.

HRMS: C$_{25}$H$_{25}$N$_2$O$[\text{M+H}]^+$; calculated: 369.1967, found: 369.1963.

3ak

5-methyl-5-neopentylbenzo[4,5]imidazo[2,1-a][2,6]naphthyridin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 10/1) gave the title compound as yellow oil (70.0 mg, 72% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.87 (s, 1H), 8.71 (d, $J = 5.2$ Hz, 1H), 8.41 (dd, $J = 6.0$, 3.3 Hz, 1H), 8.28 (d, $J = 5.2$ Hz, 1H), 7.89 (dd, $J = 6.0$, 3.2 Hz, 1H), 7.50 (dd, $J = 6.1$, 3.2 Hz, 2H), 2.70 (d, $J = 14.5$ Hz, 1H), 2.27 (d, $J = 14.5$ Hz, 1H), 1.78 (s, 3H), 0.56 (s, 9H).

13C NMR (101 MHz, Chloroform-d) δ 172.28, 149.83, 148.19, 147.25, 143.88, 136.00, 131.43, 129.20, 126.72, 126.34, 120.44, 118.25, 115.97, 54.93, 46.42, 32.55, 32.04, 30.86.

HRMS: C$_{20}$H$_{22}$N$_3$O$[\text{M+H}]^+$; calculated: 320.1763, found: 320.1760.

3al

4-methyl-4-neopentylbenzo[4,5]imidazo[1,2-a]thieno[2,3-c]pyridin-5(4H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as yellow oil (74.0 mg, 76% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.39 – 8.33 (m, 1H), 7.82 – 7.76 (m, 1H), 7.59 (dd, $J = 5.0$, 0.8 Hz, 1H), 7.46 – 7.40 (m, 2H), 7.13 (dd, $J = 5.0$, 0.9 Hz, 1H), 2.61 (d, $J = 14.5$ Hz, 1H), 2.07 (d, $J = 14.3$ Hz, 1H), 1.66 (s, 3H), 0.62 (s, 9H).

13C NMR (101 MHz, Chloroform-d) δ 173.98, 148.38, 146.64, 143.82, 130.81, 130.30, 126.87, 125.85, 125.51, 122.93, 119.55, 115.29, 55.03, 47.90, 31.96, 31.92, 30.58.

HRMS: C$_{19}$H$_{20}$N$_2$OSNa$[\text{M+Na}]^+$; calculated: 347.1194, found: 347.1192.
9,10-dichloro-5-methyl-5-neopentylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (75.8 mg, 74% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.54 (s, 1H), 8.47 (d, $J = 7.9$ Hz, 1H), 7.91 (s, 1H), 7.61 – 7.50 (m, 3H), 2.64 (d, $J = 14.4$ Hz, 1H), 2.20 (d, $J = 14.4$ Hz, 1H), 1.73 (s, 3H), 0.55 (s, 9H).

13C NMR (101 MHz, Chloroform-d) δ 173.22, 151.34, 143.45, 142.14, 131.81, 130.37, 129.98, 129.37, 127.85, 127.68, 126.15, 121.72, 120.88, 117.16, 55.39, 47.75, 33.02, 32.06, 30.79.

HRMS: C$_{21}$H$_{21}$Cl$_2$N$_2$O $[M+H]^+$; calculated: 387.1031, found: 387.1028.

3am

5,9,10-trimethyl-5-neopentylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (81.1 mg, 78% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.48 (d, $J = 7.7$ Hz, 1H), 8.19 (s, 1H), 7.61 (s, 1H), 7.54 – 7.51 (m, 2H), 7.47 (ddd, $J = 8.3$, 5.3, 3.2 Hz, 1H), 2.64 (d, $J = 14.4$ Hz, 1H), 2.45 (s, 3H), 2.43 (s, 3H), 2.17 (d, $J = 14.4$ Hz, 1H), 1.72 (s, 3H), 0.55 (s, 10H).

13C NMR (101 MHz, Chloroform-d) δ 173.39, 149.02, 142.40, 141.73, 134.88, 134.86, 130.84, 129.72, 127.55, 127.53, 125.70, 122.58, 119.89, 116.09, 55.30, 47.55, 33.01, 32.02, 30.79, 20.56, 20.49.

HRMS: C$_{23}$H$_{27}$N$_2$O $[M+H]^+$; calculated: 347.2123, found: 347.2120.

3an

5-methyl-5-neopentyl-12-phenylindolo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (98.0 mg, 83% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.76 (d, $J = 8.5$ Hz, 1H), 7.62 – 7.53 (m, 5H), 7.51 – 7.43 (m, 3H), 7.36 – 7.26 (m, 3H), 7.07 – 7.00 (m, 1H), 2.67 (d, $J = 14.3$ Hz, 1H), 2.14 (d, $J = 14.3$ Hz, 1H), 1.78 (s, 3H), 0.65 (s, 9H).

13C NMR (101 MHz, Chloroform-d) δ 173.76, 139.32, 134.33, 134.22, 132.43, 130.34, 129.73, 129.28, 128.09, 127.84, 127.73, 126.46, 125.80, 125.17, 124.90, 124.56, 120.15, 119.35, 116.98, 55.87, 46.90, 32.98, 32.06, 31.65, 30.85, 29.77, 22.72, 14.20.

HRMS: C$_{28}$H$_{28}$NO $[M+H]^+$; calculated: 394.2171, found: 394.2164.
5-(2,2-dimethylbutyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (80.7 mg, 81% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.52 (d, $J = 7.8$ Hz, 1H), 8.42 (d, $J = 6.8$ Hz, 1H), 7.86 (d, $J = 6.5$ Hz, 1H), 7.58 – 7.42 (m, 5H), 2.63 (d, $J = 14.4$ Hz, 1H), 2.18 (d, $J = 14.4$ Hz, 1H), 1.73 (s, 3H), 0.96 (dhept, $J = 28.1$, 7.1 Hz, 2H), 0.71 (t, $J = 7.5$ Hz, 3H), 0.50 (s, 3H), 0.39 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 173.52, 149.79, 144.04, 122.16, 131.44, 131.12, 127.60, 127.54, 125.89, 125.87, 125.52, 119.70, 115.80, 53.14, 47.50, 36.56, 34.45, 33.25, 27.57, 26.91, 8.25.

5-methyl-5-propylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (54.4 mg, 62% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.50 (dd, $J = 8.1$, 1.5 Hz, 1H), 8.43 – 8.36 (m, 1H), 7.88 – 7.81 (m, 1H), 7.63 – 7.56 (m, 1H), 7.54 – 7.43 (m, 4H), 2.41 (dd, $J = 13.4$, 11.7, 4.8 Hz, 1H), 1.98 (dd, $J = 13.4$, 12.1, 4.4 Hz, 1H), 1.76 (s, 3H), 1.05 – 0.95 (m, 1H), 0.88 (dd, $J = 15.7$, 8.5, 5.6, 1.6 Hz, 1H), 0.76 (t, $J = 7.1$ Hz, 3H).

13C NMR (101 MHz, Chloroform-d) δ 173.52, 149.79, 144.04, 122.16, 131.44, 131.12, 127.60, 127.54, 125.89, 125.87, 125.52, 119.70, 115.80, 53.14, 47.50, 36.56, 34.45, 33.25, 27.57, 26.91, 8.25.

(Known compound: Chem. Commun, 2019, 55, 2861-2864).

5-isobutyl-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (71.2 mg, 78% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.52 (d, $J = 8.0$ Hz, 1H), 8.41 (dd, $J = 7.4$, 1.8 Hz, 1H), 7.85 (dd, $J = 6.6$, 2.4 Hz, 1H), 7.61 – 7.54 (m, 1H), 7.52 – 7.41 (m, 4H), 2.47 (dd, $J = 14.0$, 8.3 Hz, 1H), 2.09 (dd, $J = 14.1$, 5.2 Hz, 1H), 1.70 (s, 3H), 1.39 – 1.29 (m, 1H), 0.64 (d, $J = 6.7$ Hz, 3H), 0.59 (d, $J = 6.7$ Hz, 3H).

13C NMR (101 MHz, Chloroform-d) δ 173.49, 149.80, 144.10, 141.84, 131.60, 131.43, 127.56, 126.60, 125.95, 125.83, 125.50, 122.76, 119.75, 115.75, 50.62, 48.60, 31.31, 25.64, 23.84, 22.43.

\[
\begin{align*}
\text{3as} & \quad 5-(2\text{-ethylbutyl})-5\text{-methylbenzo}[4,5]\text{imidazo}[2,1\text{-a}]\text{isoquinolin}-6\text{(5H)}\text{-one} \\
& \quad \text{Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (75.8 mg, 76\% yield).} \\
& \quad ^1\text{H NMR (400 MHz, Chloroform-\text{d}) } \delta 8.51 (d, J = 7.8 \text{ Hz}, 1\text{H}), 8.39 (d, J = 7.2 \text{ Hz}, 1\text{H}), 7.85 (d, J = 7.2 \text{ Hz}, 1\text{H}), 7.59 (t, J = 7.6 \text{ Hz}, 1\text{H}), 7.54 – 7.42 (m, 4\text{H}), 2.43 (dd, J = 14.3, 6.5 \text{ Hz}, 1\text{H}), 2.03 (d, J = 14.5 \text{ Hz}, 1\text{H}), 1.75 (s, 3\text{H}), 0.95 (dt, J = 20.6, 8.3 \text{ Hz}, 6\text{H}), 0.58 (dt, J = 13.9, 7.3 \text{ Hz}, 6\text{H}). \\
& \quad ^{13}\text{C NMR (101 MHz, Chloroform-\text{d}) } \delta 173.51, 149.91, 144.00, 141.90, 131.60, 131.37, 127.61, 126.67, 125.86, 125.54, 122.81, 119.72, 115.69, 48.65, 46.33, 37.29, 29.98, 25.82, 25.25, 10.35, 9.98. \\
\end{align*}
\]

(Known compound: Chem. Commun, 2019, 55, 2861-2864).

\[
\begin{align*}
\text{3at} & \quad 5\text{-methyl-5-}((\text{tetrahydrofuran-2-yl})\text{methyl} \text{benzo}[4,5]\text{imidazo}[2,1\text{-a}]\text{isoquinolin}-6\text{(5H)}\text{-one} \\
& \quad \text{Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (53.8 mg, 54\% yield), d:r = 1:1.} \\
& \quad ^1\text{H NMR (400 MHz, Chloroform-\text{d}) } \delta 8.50 (d, J = 7.8 \text{ Hz}, 1\text{H}), 8.39 (dd, J = 7.7, 1.7 \text{ Hz}, 1\text{H}), 7.85 (dd, J = 7.8, 1.7 \text{ Hz}, 1\text{H}), 7.63 – 7.54 (m, 2\text{H}), 7.52 – 7.43 (m, 3\text{H}), 3.47 (td, J = 7.7, 6.1 \text{ Hz}, 2\text{H}), 3.37 (td, J = 8.1, 5.9 \text{ Hz}, 1\text{H}), 2.61 (dd, J = 13.9, 7.2 \text{ Hz}, 1\text{H}), 2.48 (dd, J = 13.8, 5.5 \text{ Hz}, 1\text{H}), 1.78 (s, 3\text{H}), 1.72 – 1.62 (m, 1\text{H}), 1.61 – 1.46 (m, 2\text{H}), 1.42 – 1.22 (m, 2\text{H}). \\
& \quad ^{13}\text{C NMR (101 MHz, Chloroform-\text{d}) } \delta 173.16, 149.91, 144.00, 141.90, 131.74, 131.35, 127.66, 126.54, 125.93, 125.91, 125.57, 122.51, 119.76, 115.69, 48.67, 47.69, 47.64, 31.20, 29.98, 25.65. \\
& \quad (Known compound: Chem. Commun, 2019, 55, 2861-2864).
\end{align*}
\]

\[
\begin{align*}
\text{3au} & \quad 5\text{-methyl-5-((1-methylcyclohexyl)methyl} \text{benzo}[4,5]\text{imidazo}[2,1\text{-a}]\text{isoquinolin}-6\text{(5H)}\text{-one} \\
& \quad \text{Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (88.2 mg, 82\% yield).} \\
& \quad ^1\text{H NMR (400 MHz, Chloroform-\text{d}) } \delta 8.51 (d, J = 7.8 \text{ Hz}, 1\text{H}), 8.41 (d, J = 6.9 \text{ Hz}, 1\text{H}), 7.86 (d, J = 8.9 \text{ Hz}, 1\text{H}), 7.55 (d, J = 3.3 \text{ Hz}, 2\text{H}), 7.52 – 7.43 (m, 3\text{H}), 2.62 (d, J = 14.4 \text{ Hz}, 1\text{H}), 2.23 (d, J = 14.5 \text{ Hz}, 1\text{H}), 1.73 (s, 3\text{H}), 1.38 – 1.29 (m, 2\text{H}), 1.26 – 1.06 (m, 5\text{H}), 1.04 – 0.95 (m, 1\text{H}), 0.88 – 0.76 (m, 2\text{H}), 0.42 (s, 3\text{H}). \\
\end{align*}
\]
13C NMR (101 MHz, Chloroform-d) δ 173.58, 149.80, 144.03, 142.28, 131.44, 131.08, 127.59, 125.86, 125.51, 122.19, 119.68, 115.82, 55.39, 47.33, 39.22, 39.14, 34.51, 33.31, 26.00, 23.98, 21.79, 21.69.

3av
5-(cyclobutylmethyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one
Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as colorless oil (68.3 mg, 72% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.51 (d, $J = 7.8$ Hz, 1H), 8.39 (d, $J = 7.2$ Hz, 1H), 7.85 (d, $J = 7.2$ Hz, 1H), 7.59 (t, $J = 7.7$ Hz, 1H), 7.52 – 7.43 (m, 4H), 2.54 – 2.45 (m, 1H), 2.16 – 2.06 (m, 1H), 1.89 – 1.82 (m, 1H), 1.77 (s, 3H), 1.54 – 1.44 (m, 5H), 1.37 – 1.28 (m, 1H).

13C NMR (101 MHz, Chloroform-d) δ 173.34, 149.92, 143.85, 141.85, 131.67, 131.32, 127.66, 126.49, 125.88, 125.81, 125.58, 122.78, 119.70, 115.69, 51.36, 48.60, 32.87, 28.93, 28.53, 27.92, 18.63.
(Known compound: Chem. Commun, 2019, 55, 2861–2864).

3aw
5-(cyclopentylmethyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one
Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (74.3 mg, 75% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.52 (d, $J = 7.6$ Hz, 1H), 8.41 (d, $J = 6.7$ Hz, 1H), 7.86 (d, $J = 8.0$ Hz, 1H), 7.60 (t, $J = 7.5$ Hz, 1H), 7.55 – 7.41 (m, 4H), 2.55 (dd, $J = 13.7, 7.3$ Hz, 1H), 2.21 (dd, $J = 13.8, 5.4$ Hz, 1H), 1.75 (s, 3H), 1.47 – 1.36 (m, 2H), 1.33 – 1.14 (m, 5H), 1.03 – 0.92 (m, 1H), 0.88 – 0.76 (m, 1H).

13C NMR (101 MHz, Chloroform-d) δ 173.54, 149.92, 143.85, 141.85, 131.67, 131.32, 127.66, 126.60, 125.96, 125.86, 125.53, 122.79, 119.75, 115.79, 49.22, 49.15, 37.48, 33.59, 32.46, 30.03, 24.88, 24.61.
(Known compound: Chem. Commun, 2019, 55, 2861–2864).

3ax
5-(cyclohexylmethyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one
Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (81.6 mg, 79% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.52 (d, $J = 7.9$ Hz, 1H), 8.43 – 8.37 (m, 1H), 7.88 – 7.82 (m, 1H), 7.63 – 7.56 (m, 1H), 7.53 – 7.42 (m, 4H), 2.50 (dd, $J = 14.2, 7.9$ Hz, 1H), 2.08 (dd, $J = 14.1, 5.0$ Hz, 1H).
Hz, 1H), 1.69 (s, 3H), 1.51 – 1.39 (m, 3H), 1.31 – 1.18 (m, 2H), 1.05 – 0.91 (m, 3H), 0.88 – 0.76 (m, 3H).

13C NMR (101 MHz, Chloroform-d) δ 173.49, 149.84, 144.09, 141.92, 131.59, 131.47, 127.54, 126.57, 125.97, 125.80, 125.47, 122.62, 119.72, 115.78, 48.90, 48.36, 34.93, 34.26, 32.96, 31.66, 25.96, 25.91.

(Known compound: Chem. Commun, 2019, 55, 2861-2864).

3ay

5-(cycloheptylmethyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (74.2 mg, 69% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.52 (d, $J = 7.8$ Hz, 1H), 8.40 (d, $J = 7.0$ Hz, 1H), 7.86 (d, $J = 7.3$ Hz, 1H), 7.60 (t, $J = 7.7$ Hz, 1H), 7.54 – 7.34 (m, 4H), 2.53 (dd, $J = 14.2$, 7.7 Hz, 1H), 2.07 (dd, $J = 14.2$, 4.4 Hz, 1H), 1.71 (s, 3H), 1.27 (dt, $J = 33.4$, 12.8 Hz, 10H), 1.01 (dt, $J = 25.7$, 8.7 Hz, 3H).

13C NMR (101 MHz, Chloroform-d) δ 173.59, 149.86, 143.98, 141.85, 131.64, 131.39, 127.58, 126.61, 125.92, 125.84, 125.52, 122.70, 119.70, 115.74, 49.93, 48.65, 36.39, 35.60, 33.86, 30.98, 28.42, 28.29, 25.60, 25.49.

3az

5-((1-((4-chlorophenyl)sulfonyl)piperidin-4-yl)methyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 10/1) gave the title compound as white solid (87.4 mg, 56% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.47 (d, $J = 7.8$ Hz, 1H), 8.36 (d, $J = 7.4$ Hz, 1H), 7.83 (d, $J = 7.4$ Hz, 1H), 7.62 – 7.50 (m, 4H), 7.50 – 7.44 (m, 3H), 7.40 (d, $J = 8.3$ Hz, 2H), 3.49 (d, $J = 11.5$ Hz, 2H), 2.58 – 2.49 (m, 1H), 2.13 – 2.06 (m, 1H), 1.91 – 1.79 (m, 2H), 1.68 (s, 3H), 1.36 – 1.28 (m, 2H), 1.20 – 1.09 (m, 2H), 0.97 – 0.86 (m, 1H).

13C NMR (101 MHz, Chloroform-d) δ 173.59, 149.86, 143.98, 141.85, 131.64, 131.39, 127.58, 131.26, 129.68, 129.27, 128.93, 127.93, 126.45, 126.11, 125.74, 122.47, 119.82, 115.79, 48.33, 47.54, 46.02, 45.98, 45.82, 40.65, 32.67, 32.19, 31.60, 31.57.

HRMS: C$_{28}$H$_{27}$ClN$_{3}$O$_{3}$S [M+H]$^+$; calculated: 520.1462, found: 520.1459.

3ba
5-(((3r,5r,7r)-adamantan-1-yl)methyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 30/1) gave the title compound as white solid (97.5 mg, 82% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.52 (d, J = 7.6 Hz, 1H), 8.42 (d, J = 6.8 Hz, 1H), 7.87 (d, J = 7.9 Hz, 1H), 7.57 – 7.42 (m, 5H), 2.53 (d, J = 14.5 Hz, 1H), 2.09 (d, J = 14.6 Hz, 1H), 1.69 (s, 3H), 1.68 – 1.63 (m, 3H), 1.46 (d, J = 12.1 Hz, 3H), 1.35 – 1.29 (m, 3H), 1.14 (q, J = 12.2 Hz, 6H).
13C NMR (101 MHz, Chloroform-d) δ 173.40, 149.77, 144.04, 142.35, 131.48, 131.08, 127.57, 127.53, 125.90, 125.83, 125.47, 122.05, 119.68, 115.87, 56.24, 46.87, 43.48, 36.46, 34.19, 33.68, 28.43.
(Known compound: Chem. Commun, 2019, 55, 2861–2864).

3bb

Purification by flash column chromatography (eluent: PE/EA = 10/1) gave the title compound as white solid (89.0 mg, 81% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.65 – 8.56 (m, 1H), 8.40 – 8.31 (m, 1H), 7.96 – 7.83 (m, 3H), 7.60 – 7.54 (m, 1H), 7.51 – 7.41 (m, 6H), 7.39 – 7.33 (m, 1H), 4.33 (d, J = 18.2 Hz, 1H), 4.18 (d, J = 18.2 Hz, 1H), 1.75 (s, 3H).
13C NMR (101 MHz, Chloroform-d) δ 196.13, 173.32, 150.09, 143.82, 142.02, 135.68, 133.70, 131.75, 128.69, 128.10, 127.66, 126.53, 125.74, 125.46, 124.43, 119.72, 115.68, 49.37, 46.21, 30.23.

3bc

5-benzyl-5-neopentylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (89.9 mg, 76% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.46 – 8.38 (m, 1H), 8.32 (dd, J = 7.9, 1.4 Hz, 1H), 7.76 – 7.69 (m, 2H), 7.66 – 7.60 (m, 1H), 7.51 – 7.45 (m, 1H), 7.44 – 7.37 (m, 2H), 6.86 (t, J = 7.3 Hz, 1H), 6.79 (t, J = 7.4 Hz, 2H), 6.57 – 6.50 (m, 2H), 3.63 (d, J = 12.7 Hz, 1H), 3.24 (d, J = 12.7 Hz, 1H), 2.87 (d, J = 14.4 Hz, 1H), 2.41 (d, J = 14.4 Hz, 1H), 0.64 (s, 9H).
13C NMR (101 MHz, Chloroform-d) δ 172.36, 149.39, 143.61, 139.54, 134.24, 130.95, 130.76, 129.19, 128.17, 127.74, 127.71, 126.98, 125.79, 125.73, 125.40, 124.08, 119.51, 115.62, 54.31, 53.38, 52.48, 32.16, 31.32.
5-methyl-5-(pent-4-en-1-yl)benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one

Purification by flash column chromatography (eluent: PE/EA = 40/1) gave the title compound as white solid (59.8 mg, 63% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.49 (d, J = 7.8 Hz, 1H), 8.38 (d, J = 7.6 Hz, 1H), 7.83 (d, J = 7.1 Hz, 1H), 7.57 (t, J = 6.8 Hz, 1H), 7.53 – 7.39 (m, 4H), 5.66 – 5.50 (m, 1H), 4.95 – 4.79 (m, 2H), 2.41 (td, J = 12.9, 4.5 Hz, 1H), 2.10 – 1.85 (m, 3H), 1.73 (s, 3H), 1.14 – 1.00 (m, 1H), 0.97 – 0.85 (m, 1H).

13C NMR (101 MHz, Chloroform-d) δ 173.27, 149.85, 144.02, 141.74, 137.61, 131.92, 131.28, 127.69, 126.03, 125.54, 122.97, 119.76, 115.71, 115.13, 49.37, 42.43, 33.45, 28.91, 24.28.

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (57.4 mg, 41% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.55 (d, J = 7.7 Hz, 1H), 8.44 (d, J = 7.5 Hz, 1H), 7.88 (d, J = 7.4 Hz, 1H), 7.56 (d, J = 4.0 Hz, 2H), 7.53 – 7.41 (m, 3H), 7.03 (d, J = 7.4 Hz, 1H), 6.69 (d, J = 7.5 Hz, 1H), 6.55 (s, 1H), 3.77 – 3.64 (m, 2H), 2.72 (d, J = 14.5 Hz, 1H), 2.35 (s, 3H), 2.24 (d, J = 14.7 Hz, 1H), 2.19 (s, 3H), 1.77 (s, 3H), 1.75 – 1.63 (m, 2H), 1.17 – 1.01 (m, 2H), 0.59 (s, 3H), 0.51 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 173.45, 156.98, 149.74, 144.10, 142.02, 136.38, 131.43, 131.21, 130.28, 127.71, 127.49, 125.97, 125.93, 125.60, 123.52, 122.44, 120.65, 119.79, 115.78, 111.97, 68.28, 53.35, 47.52, 40.41, 34.32, 33.11, 28.30, 27.52, 24.06, 21.47, 15.88.

HRMS: C35H34N2O2 [M+H]+; calculated: 467.2699, found: 467.2693.

Purification by flash column chromatography (eluent: PE/EA = 20/1) gave the title compound as white solid (43.1 mg, 34% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.45 (d, J = 7.0 Hz, 1H), 8.36 (d, J = 7.8 Hz, 1H), 7.87 (d, J = 7.2 Hz, 1H), 7.51 – 7.32 (m, 5H), 6.80 (d, J = 7.6 Hz, 2H), 6.67 (d, J = 7.7 Hz, 2H), 2.89 – 2.79 (m, 1H), 2.54 – 2.44 (m, 2H), 2.34 (d, J = 7.2 Hz, 2H), 1.82 – 1.75 (m, 1H), 1.71 (s, 3H), 1.00 (d, J = 6.4 Hz, 3H), 0.90 (d, J = 5.9 Hz, 6H).
13C NMR (101 MHz, Chloroform-d) δ 173.45, 149.89, 144.06, 143.23, 141.30, 139.19, 131.41, 131.32, 129.09, 128.93, 127.31, 126.67, 126.61, 125.92, 125.75, 125.52, 122.60, 119.76, 115.81, 50.22, 48.76, 44.93, 37.17, 31.27, 30.11, 22.63, 22.45.

HRMS: C$_{29}$H$_{31}$N$_2$O [M+H]$^+$; calculated: 423.2436, found: 423.2433.

3bg

10,13-dimethyl-16-(5-(5-methyl-6-oxo-5,6-dihydrobenzo[4,5]imidazo[2,1-α]isoquinolin-5-yl)pentan-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthrene-3,6-diyl bis(4-methylbenzenesulfonate)

Purification by flash column chromatography (eluent: PE/EA = 10/1) gave the title compound as white solid (148.8 mg, 54% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.49 (d, $J = 7.4$ Hz, 1H), 8.39 (d, $J = 9.1$ Hz, 1H), 7.88 – 7.70 (m, 5H), 7.60 (t, $J = 7.6$ Hz, 1H), 7.54 – 7.42 (m, 4H), 7.41 – 7.31 (m, 4H), 4.85 – 4.71 (m, 1H), 4.38 – 4.22 (m, 1H), 2.47 (d, $J = 3.2$ Hz, 6H), 1.73 (s, 3H), 1.70 – 1.55 (m, 4H), 1.54 – 1.29 (m, 7H), 1.31 – 1.19 (m, 10H), 1.16 – 1.01 (m, 4H), 1.02 – 0.79 (m, 9H), 0.77 (s, 3H), 0.68 – 0.46 (m, 4H).

13C NMR (101 MHz, Chloroform-d) δ 173.45, 149.98, 144.69, 144.04, 141.90, 134.49, 131.91, 131.33, 130.30, 129.84, 129.81, 129.07, 127.66, 127.60, 127.53, 126.68, 126.03, 125.89, 125.54, 123.06, 122.94, 119.73, 115.74, 81.81, 56.05, 55.89, 55.66, 49.52, 46.30, 43.33, 43.13, 42.70, 39.47, 39.39, 36.11, 35.68, 35.59, 35.26, 35.18, 34.78, 32.07, 29.72, 29.12, 27.95, 27.33, 26.44, 23.84, 22.85, 21.70, 21.68, 20.46, 18.26, 18.21, 11.89.

HRMS: C$_{54}$H$_{65}$N$_2$O$_7$S$_2$ [M+H]$^+$; calculated: 917.4233, found: 917.4243.

3bh

5-methyl-5-neopentyl-5,6-dihydrobenzo[4,5]imidazo[2,1-α]isoquinolin-6-ol

Purification by flash column chromatography (eluent: PE/EA = 10/1) gave the title compound as white solid (310.8 mg, 97% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.10 (dd, $J = 7.7, 1.4$ Hz, 1H), 7.71 – 7.66 (m, 1H), 7.54 – 7.42 (m, 4H), 7.41 – 7.31 (m, 7H), 6.49 (s, 1H), 1.85 (s, 3H), 1.41 (s, 2H), 0.69 (s, 9H).

13C NMR (101 MHz, Chloroform-d) δ 173.45, 149.89, 144.06, 143.23, 141.30, 139.19, 131.41, 131.32, 129.09, 128.93, 127.31, 126.67, 126.61, 125.92, 125.75, 125.52, 122.60, 119.76, 115.81, 50.22, 48.76, 44.93, 37.17, 31.27, 30.11, 22.63, 22.45.

5-methyl-5-neopentyl-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-6-yl 4-(tert-butyl)benzoate

Purification by flash column chromatography (eluent: PE/EA = 10/1) gave the title compound as white solid (433.6 mg, 93% yield).

1H NMR (400 MHz, Chloroform-d) δ 8.41 (d, J = 7.2 Hz, 1H), 7.89 – 7.81 (m, 1H), 7.79 – 7.74 (m, 1H), 7.71 (d, J = 8.6 Hz, 2H), 7.58 – 7.49 (m, 3H), 7.44 (s, 1H), 7.37 – 7.31 (m, 4H), 1.80 (s, 3H), 1.63 – 1.53 (m, 2H), 1.26 (s, 9H), 0.84 (s, 9H).

13C NMR (101 MHz, Chloroform-d) δ 165.72, 157.51, 148.24, 141.11, 133.70, 130.80, 129.79, 127.66, 126.28, 126.04, 125.81, 125.44, 123.62, 123.34, 119.64, 110.57, 52.70, 43.90, 35.10, 32.75, 31.49, 30.98, 21.15.

HRMS: C$_{32}$H$_{37}$N$_2$O$_2$ [M+H]$^+$; calculated: 481.2855, found: 481.2854.
XII. Copied of NMR spectra

1H and 13C NMR spectra of 3aa
1H and 13C NMR spectra of 3ab
1H and 13C NMR spectra of 3ac
^{1}H and ^{13}C NMR spectra of 3ad
1H and 13C NMR spectra of 3ae
1H and 13C NMR spectra of 3af
1H and 13C NMR spectra of 3ag
1H and 13C NMR spectra of 3ah
1H and 13C NMR spectra of 3ai
1H and 13C NMR spectra of 3aj
1H and 13C NMR spectra of 3ak
1H and 13C NMR spectra of 3αl
1H and 13C NMR spectra of 3am
1H and 13C NMR spectra of 3an
1H and 13C NMR spectra of 3ao
1H and 13C NMR spectra of 3ap

[Diagram of chemical structures and NMR peaks]

41
1H and 13C NMR spectra of 3aq
1H and 13C NMR spectra of 3ar
1H and 13C NMR spectra of 3as
^{1}H and ^{13}C NMR spectra of 3at
1H and 13C NMR spectra of 3au
1H and ^{13}C NMR spectra of 3aw
^{1}H and ^{13}C NMR spectra of 3ax
1H and 13C NMR spectra of 3ay
1H and 13C NMR spectra of 3az
1H and 13C NMR spectra of 3ba
1H and 13C NMR spectra of 3bb
^{1}H and ^{13}C NMR spectra of 3bc
1H and 13C NMR spectra of 3bd
^{1}H and ^{13}C NMR spectra of 3be
1H and 13C NMR spectra of 3bf
1H and 13C NMR spectra of 3bg
\(^1\)H and \(^13\)C NMR spectra of 3bh
1H and 13C NMR spectra of 3bi