Supplementary Information (SI)

Tunable electronic and optical properties of Janus Al₂M₂ClBr (M=O, S) monolayers as UV photodetectors applications

Yujin Liu^a, Xinguo Ma^{*ab}, Tian Xie^a, Yijing Ren^a, Jinyi Zhu^a, Nan Ma^c, Jingjing Lu^a Jeongmin Hong^{*d},

^a School of Science, Hubei University of Technology, Wuhan 430068, China. E-mail: maxg@hbut.edu.cn

^b State Key Laboratory of Advanced Technology for Float Glass, Bengbu Glass Industrial Design and Research Institute, Bengbu, 233030, China.

^c Key Laboratory of Inorganic Functional Materials and Devices, Chinese Academy of Sciences, Shanghai 201899, China. E-mail: <u>manan@mail.sic.ac.cn</u>

^d EECS, UC Berkeley, Berkeley, CA, USA. Email: <u>jehong@berkeley.edu</u>

*Corresponding Authors, E-mail: maxg@hbut.edu.cn (X. Ma), jehong@berkeley.edu

Table S1 Calculated effective masses for Janus Al₂M₂ClBr (M=O, S) monolayers by PBE+SOC and HSE06+SOC.

Material	Method	Direction	m_{e}^{*}/m_{0}	m_{h}^{*}/m_{0}
Al ₂ O ₂ ClBr	PBE+SOC	Х	0.52	0.23
		у	0.34	8.08
	HSE06+SOC	Х	0.58	0.23
		у	0.37	7.95
Al_2S_2ClBr	PBE+SOC	Х	1.00	0.81
		у	0.19	0.26
	HSE06+SOC	Х	0.97	0.81
		у	0.19	0.26

method	materials	species	charge	bonds	population
PBE	Al ₂ O ₂ ClBr	Al_1	1.35	O_1 - Al_1	0.56
		Al_2	1.50	O ₂ - Al ₂	0.55
		O_1	-1.08	O_2 - Al_1	0.59
		O_2	-1.08	O_1 - Al_2	0.59
		Cl_1	-0.41	Al_2 - Cl_1	0.71
		Br_1	-0.28	Al_1 - Br_1	0.73
	Al_2S_2ClBr	Al_1	0.84	S_1 - Al_1	0.54
		Al_2	1.01	S_2 - Al_2	0.54
		\mathbf{S}_1	-0.61	S_2 - Al_1	0.97
		S_2	-0.60	S_1 - Al_2	0.97
		Cl_1	-0.40	Al_2 - Cl_1	0.63
		Br_1	-0.24	Al_1 - Br_1	0.66
PW91	Al ₂ O ₂ ClBr	Al_1	1.35	O_1 - Al_1	0.56
		Al_2	1.51	O_2 - Al_2	0.55
		O_1	-1.09	O_2 - Al_1	0.59
		O_2	-1.09	O_1 - Al_2	0.59
		Cl_1	-0.41	Al_2 - Cl_1	0.71
		Br_1	-0.28	Al_1 - Br_1	0.73
	Al_2S_2ClBr	Al_1	0.84	S_1 - Al_1	0.54
		Al_2	1.01	S_2 - Al_2	0.54
		\mathbf{S}_1	-0.61	S_2 - Al_1	0.97
		S_2	-0.60	S_1 - Al_2	0.97
		Cl_1	-0.40	Al_2 - Cl_1	0.63
		Br_1	-0.24	Al_1 - Br_1	0.66

Table S2 Mulliken charges and overlap populations of Janus Al2M2ClBr (M=O, S) monolayersafter geometry optimization by PBE and PW91 methods.

Fig. S1. Band structures of Janus (a) Al_2O_2ClBr and (b) Al_2S_2ClBr monolayers under different strain ε_b .

Fig. S2. Band structures of Janus (a) Al_2O_2ClBr and (b) Al_2S_2ClBr monolayers under different electric field *E*.

Fig. S3. The changes of the real part of the dielectric and the imaginary part of the dielectric of Janus Al₂O₂ClBr and Al₂S₂ClBr monolayers under different biaxial strain ε_b (a-d) electric field *E* (e-h).