Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Electronic Supplementary Information (ESI)

Vanadium(V) Arylimido Alkylidene *N*-Heterocyclic Carbene Complexes Containing Fluorinated Alkoxide or Halogenated Phenoxide Ligands for the Syndiospecific ROMP of Cyclic Olefins.

Kotohiro Nomura,*^{,1} Shuko Kuwahara,^{1,†} Jirapa Suthala,^{1,†} Yuta Kawamoto,¹ Daisuke Shimoyama,¹ and Michael R. Buchmeiser^{2,3}

¹Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0927, Japan ²Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany ³German Institutes of Textile and Fiber Research (DITF) Denkendorf, Körschtalstr. 26, D-73770 Denkendorf, Germany

*Corresponding author, E-mail: ktnomura@tmu.ac.jp (KN).

Table of Contents

1.	Additional results for ring-opening metathesis polymerisation (ROMP) of					
	norbornene (NBE)	52-5				
2.	Selected NMR spectra of the polymers	S4-S11				
3.	Selected DSC thermograms of the polymers after hydrogenation	S12				
4.	Additional data including crystal data and collection parameters for structural					
	analysis of $[V(CHSiMe_3)(N-2,6-X_2C_6H_3){OC(CF_3)_3}(NHC)] (X = F, Cl)$	515				

1. Additional results for ring-opening metathesis polymerization (ROMP) of norbornene (NBE)

cat.	time/ min	yield/ %	TON ^b	$TOF^{b}/h^{-1}(s^{-1})$	$M_{\rm n}{}^{c} \times 10^{-4}$	$M_{\rm w}/M_n^c$	cis ^d /%
1	1	41	2180	131000 (36.3)	39.4	1.59	92
1	3	60	3190	63700 (17.7)	65.6	2.01	91
1	5	70	3720	44600 (12.4)	73.5	2.19	90
1	7	79	4190	36000 (10.0)	87.9	2.27	90
1	10	88	4670	28000 (7.79)	93.2	2.32	90
2	1	29	1540	92400 (25.7)	17.9	1.55	96
2	3	47	2500	49900 (13.9)	40.5	1.87	95
2	5	56	2970	35700 (9.91)	58.3	2.00	95
2	7	65	3450	29600 (8.22)	67.8	2.11	95
2	10	70	3720	22300 (6.20)	85.7	2.18	94

Table S1. Living ROMP of NBE by V(CHSiMe₃)(N-2,6-Cl₂C₆H₃)(OC₆X₅)(NHC) [X = F (1), Cl (2)]; NHC = IXy; 1,3-bis(2,6-dimethylphenyl)imidazole-2-ylidene].^{*a*}

^{*a*}Reaction conditions: vanadium 0.20 μ mol, NBE 100 mg (1.06 mmol), benzene total 9.6 mL (initial NBE conc. 0.11 mmol/mL). ^{*b*}TON (turnovers) = NBE reacted (mmol)/vanadium (mmol), TOF = TON/time. ^{*c*}GPC data in THF *vs* polystyrene standards (*Mn* in g/mol). ^{*d*}Cis percentage (%) estimated by ¹H NMR spectra.

cat.	time/ min	temp./ °C	c yield/ %	TON ^b	$TOF^{b}/h^{-1}(s^{-1})$	$M_{\rm n}{}^c \times 10^{-4}$	$M_{\rm w}/M_n^c$	cis ^d /%
1	1	25	61	2160	130000 (36.0)	34.6	1.51	92
1	3	25	83	2940	58800 (16.3)	58.3	1.66	90
1	5	25	96	3400	40800 (11.3)	77.7	1.75	88
1	1	50	58	2050	123000 (34.2)	46.1	1.58	77
1	3	50	81	2870	57300 (15.9)	83.4	1.84	76
1	5	50	89	3150	37800 (10.5)	96.5	2.08	73
2	1	25	44	1560	93500 (26.0)	17.6	1.43	96
2	3	25	69	2440	48900 (13.6)	34.1	1.57	95
2	5	25	79	2800	33600 (9.32)	39.9	1.63	94
2	1	50	38	1350	80700 (22.4)	18.7	1.55	89
2	3	50	61	2160	43200 (12.0)	35.4	1.68	89
2	5	50	68	2410	28900 (8.02)	52.5	1.72	88

Table S2. ROMP of NBE using V(CHSiMe₃)(N-2,6-Cl₂C₆H₃)(OC₆X₅)(NHC) [X = F (1), Cl (2)].^{*a*}

^{*a*}Reaction conditions: vanadium 0.30 µmol, NBE 100 mg (1.06 mmol), benzene total 9.6 mL (initial NBE conc. 0.11 mmol/mL). ^{*b*}TON (turnovers) = NBE reacted (mmol)/vanadium (mmol), TOF = TON/time. ^{*c*}GPC data in THF *vs* polystyrene standards (*Mn* in g/mol). ^{*d*}Cis percentage (%) estimated by ¹H NMR spectra.

Figure S1. Plot of M_n values vs polymer yields (TON, turnover numbers based on polymer yields). The detailed data are shown in Table S2.

2. Selected NMR spectra of the polymers.

Figure S2. ¹H NMR spectrum (CDCl₃ at 25°C) of ring opened poly(NBE) prepared by V(N-2,6-Cl₂C₆H₃)(CHSiMe₃)(OC₆F₅)(NHC) (1) at 25°C (run 3).

Figure S3. ¹³C NMR spectrum (CDCl₃ at 25°C) of ring opened poly(NBE) prepared by V(N-2,6-Cl₂C₆H₃)(CHSiMe₃)(OC₆F₅)(NHC) (1) at 25°C (run 3).

Figure S4. ¹H NMR spectrum (CDCl₃ at 25°C) of ring opened poly(NBE) prepared by V(N-2,6-Cl₂C₆H₃)(CHSiMe₃)(OC₆F₅)(NHC) (1) at 50°C (run 2).

Figure S5. ¹³C NMR spectrum (CDCl₃ at 25°C) of ring opened poly(NBE) prepared by V(N-2,6-Cl₂C₆H₃)(CHSiMe₃)(OC₆F₅)(NHC) (1) at 50°C (run 2).

Figure S6. ¹H NMR spectrum (CDCl₃ at 25°C) of ring opened poly(NBE) prepared by V(N-2,6-Cl₂C₆H₃)(CHSiMe₃)(OC₆Cl₅)(NHC) (**2**) at 25°C (run 7).

Figure S7. ¹³C NMR spectrum (CDCl₃ at 25°C) of ring opened poly(NBE) prepared by V(N-2,6-Cl₂C₆H₃)(CHSiMe₃)(OC₆Cl₅)(NHC) (**2**) at 25°C (run 7).

Figure S8. ¹H NMR spectrum (CDCl₃ at 25°C) of ring opened poly(NBE) prepared by V(N-2,6-Cl₂C₆H₃)(CHSiMe₃)(OC₆Cl₅)(NHC) (**2**) at 50°C (run 10).

Figure S9. ¹³C NMR spectrum (CDCl₃ at 25°C) of ring opened poly(NBE) prepared by V(N-2,6-Cl₂C₆H₃)(CHSiMe₃)(OC₆Cl₅)(NHC) (**2**) at 50°C (run 10).

Hydrogenation of ring-opened poly(NBE)s.

Figure S10. ¹H NMR spectrum (CDCl₃ at 50°C) of hydrogenated ring opened poly(NBE) prepared by V(N-2,6-Cl₂C₆H₃)(CHSiMe₃)(OC₆Cl₅)(NHC) (**2**) at 25°C (run 19).

Figure S11. ¹³C NMR spectrum (in CDCl₃ at 50 °C) of hydrogenated ring opened poly(NBE) prepared by V(N-2,6-Cl₂C₆H₃)(CHSiMe₃)(OC₆Cl₅)(NHC) (**2**) at 25 °C (run 19).

Figure S12. ¹³C NMR spectrum (in CDCl₃ at 50 °C) of hydrogenated ring opened poly(NBE) prepared by V(N-2,6-Cl₂C₆H₃)(CHSiMe₃)(OC₆Cl₅)(NHC) (**2**) at 50°C (run 18).

Figure S13. ¹³C NMR spectrum (in CDCl₃ at 50 °C) of hydrogenated ring opened poly(NBE) prepared by V(N-2,6-Cl₂C₆H₃)(CHSiMe₃)(OC₆F₅)(NHC) (1) at 25°C (run 15).

Figure S14. ¹³C NMR spectrum (in CDCl₃ at 50 °C) of hydrogenated ring opened poly(NBE) prepared by V(N-2,6-Cl₂C₆H₃)(CHSiMe₃)(OC₆F₅)(NHC) (1) at 50°C (run 16).

Figure S15. ¹H NMR spectrum (in CDCl₃ at 25 °C) of ring opened poly(TCD) prepared by $V(N-2,6-Cl_2C_6H_3)(CHSiMe_3)[OC(CF_3)_3](NHC)$ (4) at 25°C (run 36).

Figure S16. ¹H NMR spectrum (in CDCl₃ at 50 °C) of hydrogenated ring opened poly(TCD) prepared by $V(N-2,6-Cl_2C_6H_3)(CHSiMe_3)[OC(CF_3)_3](NHC)$ (4) at 25°C (run 36).

3. Selected DSC thermograms of the polymers after hydrogenation.

Figure S17. DSC thermogram of hydrogenated ring opened poly(NBE) prepared by V(N-2,6-Cl₂C₆H₃)(CHSiMe₃)(OC₆F₅)(NHC) (1) at 50°C (run 5, $T_m = 136.2$ °C, *cis* 86%).

Figure S18. DSC thermogram of hydrogenated ring opened poly(NBE) prepared by V(N-2,6-Cl₂C₆H₃)(CHSiMe₃)(OC₆Cl₅)(NHC) (**2**) at 25°C (run 9, $T_m = 137.8$ °C, *cis* 97%).

4. Crystal data and collection parameters for structural analysis of [V(CHSiMe₃)(N-2,6-X₂C₆H₃){OC(CF₃)₃(NHC)] (X = F, Cl)

Table S3. Crystal data and collection parameters of $[V(CHSiMe_3)(N-2,6-X_2C_6H_3){OC(CF_3)_3}(NHC)] [X = F (3), ,Cl (4); NHC = 1,3-bis(2,6-dimethylphenyl)imidazole-2-ylidene (IXy)].$

	V(CHSiMe ₃)(N-2,6-F ₂ C ₆ H ₃)[OC(CF ₃) ₃]-	V(CHSiMe ₃)(N-2,6-Cl ₂ C ₆ H ₃)[OC(CF ₃) ₃]-
	(NHC) (3)	(NHC) (4)
Formula	$C_{33}H_{33}F_{11}N_3OSiV$	C33H33Cl2F9N3OSiV
Formula weight	775.65	808.55
Crystal color,	black, plate	violet, block
Habit		
Crystal size (mm)	$0.186\times0.185\times0.041$	$0.288 \times 0.227 \times 0.139$
Crystal system	Triclinic	monoclinic
Space group	<i>P</i> -1	$P2_1/n$
a (Å)	9.6615(4)	15.1196(5)
<i>b</i> (Å)	12.4091(4)	16.0398(5)
<i>c</i> (Å)	16.1836(5)	15.5170(5)
α (deg)	91.240(2)	
β (deg)	95.293(3)	102.341(3)
γ (deg)	111.900(3)	
$V(Å^3)$	1789.27(11)	3676.2(2)
Z value	2	4
$D_{\rm calcd}~({ m g/cm^3})$	1.440	1.461
F_{000}	792.0	1648.0
Temp (K)	93 (2)	93 (2)
μ (Mo K α) (cm ⁻¹)	3.99	5.25
No. of reflections	Total: 26875	Total: 55266
measured (R_{int})	Unique: 8543	Unique: 8811
	(0.0273)	(0.0464)
$2\theta_{\max}$ (deg)	55.8	55.9
No. of	8543	8811
observations [I >		
$2.00\sigma(I)$]		
No. of variables	594	691
$R1 [I > 2.00\sigma(I)]$	0.0790	0.0818
$wR2 [I > 2.00\sigma(I)]$	0.2180	0.2132
Goodness of Fit	1.041	1.120

Figure S19. Electron density maps of V(N-2,6- $X_2C_6H_3$)(CHSiMe₃)[(OC(CF₃)₃)](NHC) [X = F (**3**, top),Cl (**4**,bottom)]. There are large residuals due to disorder hard to solve.