Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

(Supplementary Information)

Hydrothermal Synthesis of Arginine Decorated $Na_xLi_yPr(MoO_4)_2:Tb^{3+}$ and $Na_xLi_yPr(WO_4)_2:Tb^{3+}$ Nanomaterials: Photocatalytic Degradation and Luminescent Sensing of Picric Acid in an Aqueous Medium

Swaita Devi, Charanjeet Sen, Nidhi Bhagat, Richa Singhaal, Haq Nawaz Sheikh*

^aDepartment of Chemistry, University of Jammu, Baba Sahib Ambedkar Road, Jammu 180006, India

hnsheikh@jammuuniversity.ac.in

Table of Contents

CONTENTS	Pages
1. SEM particle distribution graphs	
2. TEM micrographs	
3. EDS spectra	S6
4. FT-IR spectra	
5. Energy transfer diagram	
6. Life time decay curves of prepared nanomaterials	
7. UV-Visible spectra	
8. PL spectra	S14
9. Life time decay curves of $Na_xLi_yPr(MoO_4)_2$:Tb ³⁺ @Arg in the	presence of different concentrations
of PA ions	
10. Pseudo-first order plots of catalysts	for photodegradation of
РА	S16
11. Scavenger tests	

12. FE-SEM micrograph of Na_xLi_yPr(WO₄)₂:Tb³⁺@Arg after photodegradation of PA....S18
13. EDS spectrum of Na_xLi_yPr(WO₄)₂:Tb³⁺@Arg after photodegradation of PAS19
14. XRD spectrum of Na_xLi_yPr(WO₄)₂:Tb³⁺@Arg after photodegradation of PAS20

Fig. S1 SEM particle distribution graphs of as-synthesized $Na_xLi_yPr(MoO_4)_2:Tb^{3+}$ nanoparticles with different Li/Na ions concentrations: (Where x/y = (a) x=15 mmol y=0 mmol, (b) x=12.5 mmol, y=2.5 mmol, (c) x=10 mmol y=5 mmol, (d) x=5 mmol, y=10 mmol and (e) x=0 mmol, y=15 mmol)

Fig. S2 Particle distribution graphs of (a) Na_xLi_yPr(MoO₄)₂:Tb³⁺@Arg and (b) Na_xLi_yPr(MoO₄)₂:Tb³⁺@Lys (x=10 mmol and y=5 mmol)

Fig. S3 Particle distribution graphs of (a) $Na_xLi_yPr(WO_4)_2:Tb^{3+}$, (b) $Na_xLi_yPr(WO_4)_2:Tb^{3+}@Lys$ and (c) $Na_xLi_yPr(WO_4)_2:Tb^{3+}@Arg$ (x=10 mmol and y=5 mmol)

Fig. S4 TEM micrographs of (a) $Na_xLi_yPr(MoO_4)_2:Tb^{3+}$, (b) $Na_xLi_yPr(MoO_4)_2:Tb^{3+}@Arg$ and (c) $Na_xLi_yPr(MoO_4)_2:Tb^{3+}@Lys$ (x=10 mmol and y=5 mmol)

Fig. S5 TEM micrographs of (a) $Na_xLi_yPr(WO_4)_2:Tb^{3+}$, (b) $Na_xLi_yPr(WO_4)_2:Tb^{3+}@Arg$ and (c) $Na_xLi_yPr(WO_4)_2:Tb^{3+}@Lys$ (x=10 mmol and y=5 mmol)

Fig. S6 EDS spectra of (a) $Na_xLi_yPr(MoO_4)_2:Tb^{3+}$, (b) $Na_xLi_yPr(MoO_4)_2:Tb^{3+}@Arg$ and (c) $Na_xLi_yPr(MoO_4)_2:Tb^{3+}@Lys$ (x=10 mmol and y=5 mmol)

Fig. S7 EDS spectra of (a) $Na_xLi_yPr(WO_4)_2:Tb^{3+}$, (b) $Na_xLi_yPr(WO_4)_2:Tb^{3+}@Arg$ and (c) $Na_xLi_yPr(WO_4)_2:Tb^{3+}@Lys$ (x=10 mmol and y=5 mmol)

Fig. S8 FT-IR spectra of as-synthesized $Na_xLi_yPr(MoO_4)_2$:Tb³⁺ nanoparticles with different Li/Na ions concentrations: (Where x/y = (a) x=15 mmol y=0 mmol, (b) x=12.5 mmol, y=2.5 mmol, (c) x=10 mmol y=5 mmol, (d) x=5 mmol, y=10 mmol and (e) x=0 mmol, y=15 mmol)

Fig. S9 FT-IR spectra of (a) $Na_xLi_yPr(MoO_4)_2$:Tb³⁺@Lys and (b) $Na_xLi_yPr(MoO_4)_2$:Tb³⁺@Arg (x=10 mmol and y=5 mmol)

Fig. S10 FT-IR spectra of (a) $Na_xLi_yPr(WO_4)_2:Tb^{3+}$, (b) $Na_xLi_yPr(WO_4)_2:Tb^{3+}@Arg$ and (c) $Na_xLi_yPr(WO_4)_2:Tb^{3+}@Lys$ (x=10 mmol and y=5 mmol)

Fig. S11 The plausible energy transfer mechanism involving in photoluminescence emission

Fig. S12 Decay curves of as-synthesized $Na_xLi_yPr(MoO_4)_2:Tb^{3+}$ nanoparticles with different Li/Na ions concentrations: (Where x/y = (a) x=15 mmol y=0 mmol, (b) x=12.5 mmol, y=2.5 mmol, (c) x=10 mmol y=5 mmol, (d) x=5 mmol, y=10 mmol and (e) x=0 mmol, y=15 mmol)

Fig. S13 Decay curves of (a) $Na_xLi_yPr(MoO_4)_2:Tb^{3+}@Lys$ and (b) $Na_xLi_yPr(MoO_4)_2:Tb^{3+}@Arg$ (x=10 mmol and y=5 mmol)

Fig. S14 Decay curves of (a) $Na_xLi_yPr(WO_4)_2:Tb^{3+}$, (b) $Na_xLi_yPr(WO_4)_2:Tb^{3+}@Lys$ and (c) $Na_xLi_yPr(WO_4)_2:Tb^{3+}@Arg$ (x=10 mmol and y=5 mmol)

Fig. S15 UV-visible absorption spectra of (a) $Na_xLi_yPr(MoO_4)_2$:Tb³⁺, (b) $Na_xLi_yPr(WO_4)_2$:Tb³⁺ (c) $Na_xLi_yPr(MoO_4)_2$:Tb³⁺@Arg and (d) $Na_xLi_yPr(WO_4)_2$:Tb³⁺@Arg (x=10 mmol and y=5 mmol)

Fig. S16 PL spectra of (a) $Na_xLi_yPr(MoO_4)_2$: Tb³⁺@Arg and (b) $Na_xLi_yPr(MoO_4)_2$: Tb³⁺@Arg + 100 ppm of PA

Fig. S17 Time-resolved decay dynamics of $Na_xLi_yPr(MoO_4)_2$:Tb³⁺@Arg (x=10 mmol and y=5 mmol) after excitation at 245 nm in the presence of PA ions (0, 20, 40, 60, 80 and 100 ppm)

Fig. S18 Pseudo-first order plots of photodegradation of PA by $Na_xLi_yPr(WO_4)_2$:Tb³⁺@Arg and $Na_xLi_yPr(MoO_4)_2$:Tb³⁺@Arg (x=10 mmol and y=5 mmol) nanocatalysts under UV light irradiation

Fig. S19 Scavenger tests of the PA degradation

Fig. S20 FE-SEM micrograph of $Na_xLi_yPr(WO_4)_2$:Tb³⁺@Arg (x=10 mmol and y=5 mmol) after photodegradation of PA

Fig. S21 EDS micrograph of $Na_xLi_yPr(WO_4)_2$:Tb³⁺@Arg (x=10 mmol and y=5 mmol) after photodegradation of PA

Fig. S22 XRD spectrum of $Na_xLi_yPr(WO_4)_2$:Tb³⁺@Arg (x=10 mmol and y=5 mmol) (a) before and (b) after photodegradation of PA