Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Electronic Supplementary Material for:

Effect of sulfur dioxide impurity on electrochemical reduction of carbon dioxide over Cu-based bimetal catalysts

Zhen Wang^{1,3#}, Bo Xiong^{1#}, Yingju Yang^{1,2*}, Jing Liu^{1,2}, Man Chen¹

¹ State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

² Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen 518057, China

³ State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China

Corresponding Author:

* Tel: +86 27 87545526; fax: +86 27 87545526;

E-mail address: <u>yangyingju@hust.edu.cn</u>.

Content includes: one.

Table S1 DFT calculated free energy of potential limiting step in eV.

Fig. S1 Schematic illustration of the structural model of the Cu-M (M = Cr, Fe, Mn, Ru, Os, Ir, Mo,

W, Ni and Pd) surface.

Fig. S2 Optimized structures of S elemental substance adsorption on the catalyst surface at the Hollow site.

Fig. S3 Optimized structures of COOH* over the Cu-M (M = Cr, Fe, Mn, Ru, Os, Ir, Mo, W, Ni and

Pd) catalysts.

Fig. S4 Optimized structures of CO* over the Cu-M (M = Cr, Fe, Mn, Ru, Os, Ir, Mo, W, Ni and Pd) catalysts.

Free Energy Calculation

The free energies of the reaction intermediates were derived from the corresponding binding energies by adding the zero-point energy (ZPE), and entropy (–TS) corrections, which were calculated based on the vibrational frequency analysis. The computational hydrogen electrode (CHE) model was used to estimate the free energy change (ΔG) at each elementary step:

$$\Delta G = \Delta E + \Delta E_{\text{ZPE}} - T\Delta S \tag{S1}$$

where *E*, E_{ZPE} , *S*, and *T* represent the DFT-optimized energy, zero-point energy, entropy, and temperature (298 K), respectively.

The adsorption energy (E_{ad}) is used to evaluate the interaction strength between the small molecule species and catalyst surface, and is expressed by the following formula:

$$E_{\rm ad} = E_{\rm (catalyst-M)} - (E_{\rm catalyst} + E_{\rm M}) \tag{S2}$$

where $E_{\text{(catalyst-M)}}$, E_{catalyst} , and E_{M} represent the total energies of the catalyst surface covered by adsorbate, the clean catalyst surface, and the unabsorbed molecules, respectively.

CO₂RR-to-CO is a two-electron-transfer process including three steps:

$$CO_2(g) + H^+ + e^- \rightarrow COOH^*$$
 (R1)

$$COOH^* + H^+ + e^- \rightarrow CO^* + H_2O(l)$$
(R2)

$$CO^* \to CO(g)$$
 (R3)

CO₂RR-to-HCOOH is also a two-electron-transfer process including two steps:

$$CO_2(g) + H^+ + e^- \rightarrow COOH^*/OCHO^*$$
 (R4)

$$COOH*/OCHO* + H^+ + e^- \rightarrow HCOOH(l)$$
(R5)

where * denotes active site of electrocatalysts. (l) and (g) represent liquid and gaseous phases, respectively. COOH*, CO*, and OCHO* are the adsorbed-state intermediates of the CO₂RR.

Catalyst	Clean surface	S-doped surface
Cu-Cr	0.426	0.605
Cu-Fe	0.738	0.866
Cu-Mn	0.491	0.669
Cu-Ru	1.239	1.301
Cu-Os	1.458	1.616
Cu-Ir	1.091	1.130
Cu-Mo	1.035	1.067
Cu-W	1.251	0.528
Cu-Ni	0.803	1.165
Cu-Pd	0.780	0.446

Table S1 DFT	calculated free en	nergy of potential	limiting step in eV.

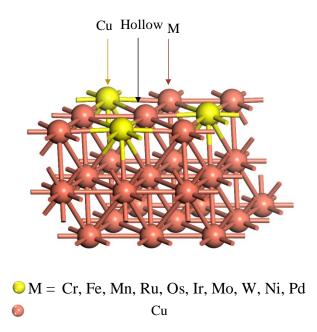


Fig. S1 Schematic illustration of the structural model of the Cu-M (M = Cr, Fe, Mn, Ru, Os, Ir, Mo,

W, Ni and Pd) surface.

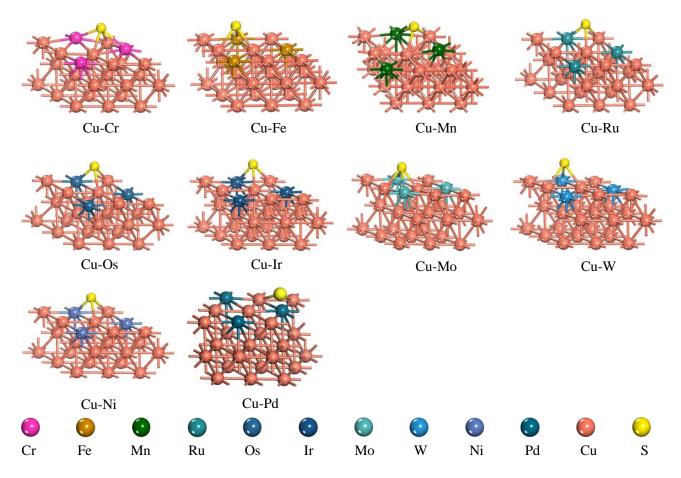


Fig. S2 Optimized structures of S elemental substance adsorption on the catalyst surface at the Hollow site.

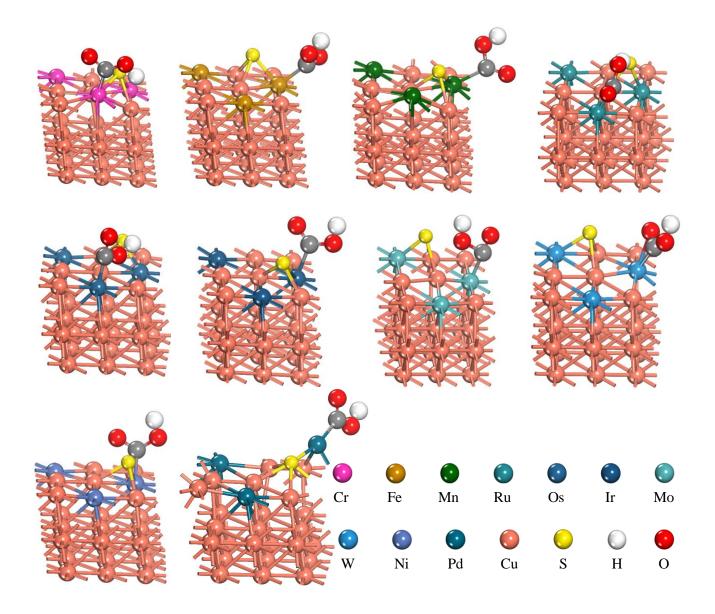


Fig. S3 Optimized structures of COOH* over the Cu-M (M = Cr, Fe, Mn, Ru, Os, Ir, Mo, W, Ni and

Pd) catalysts.

Fig. S4 Optimized structures of CO* over the Cu-M (M = Cr, Fe, Mn, Ru, Os, Ir, Mo, W, Ni and Pd)

catalysts.