Supplementary Information (SI) for New Journal of Chemistry.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Enhanced luminescence of Ni₃S₄:Co nanoparticles with fast nanosecond lifetime

Jidan Xing^{a,b}, Zhipeng Liu^{a,b}, Pingping Ou^b, Mingyan Chuai^{b,c*}, Guoliang Chai^{b,c*}

^aFuzhou University, College of Chemistry, Fuzhou 350108, Fujian, People's Republic of China

^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, People's Republic of China

^cMindu Innovation Laboratory, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, Peopless Republic of China

^{*}Corresponding Authors' E-mail: g.chai@fjirsm.ac.cn; chuaimingyan@fjirsm.ac.cn

Experiment section

Materials characterization

The valence states of the elements were analyzed by using X-ray photoelectron spectroscopy (XPS, ESCALAB MK II). The luminescence decay profile measurements were carried out with an Edinburgh FLS980 fluorescence spectrophotometer using a picosecond pulsed LASER Diode EPL as the source of excitation.

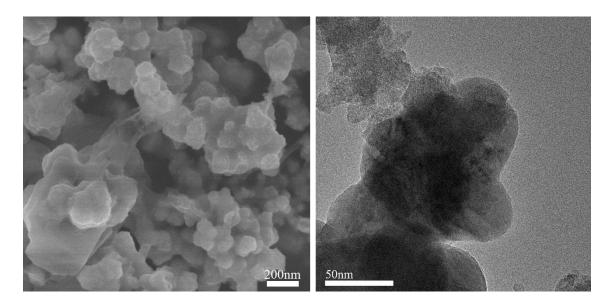


Fig. S1. The high magnification SEM and TEM image of pure Ni₃S₄.

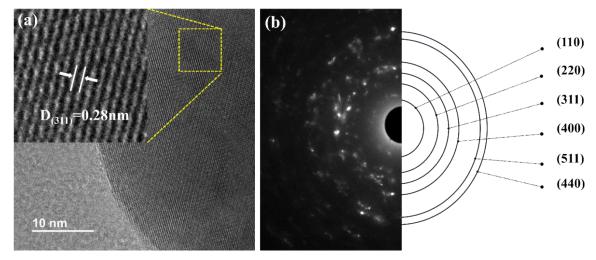


Fig. S2. The HRTEM (a) pattern and SAED (b) images of pure Ni_3S_4 .

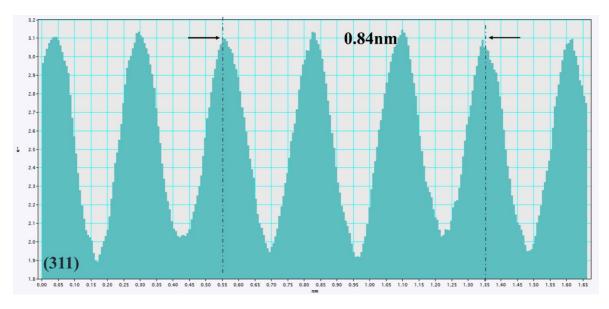


Fig. S3. FFT patterns of the area and normalized intensity variations of Ni_3S_4 :Co (0.51 at.%).

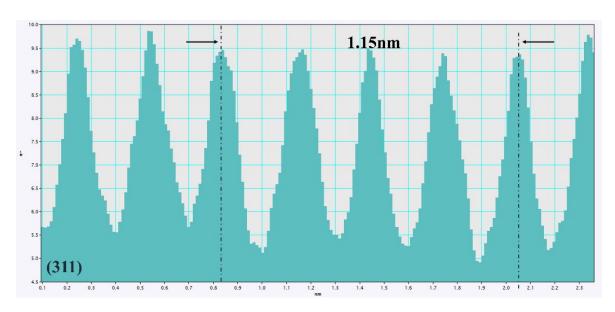
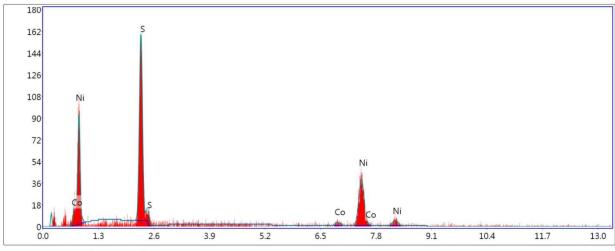



Fig. S4. FFT patterns of the area and normalized intensity variations of pure Ni_3S_4 .

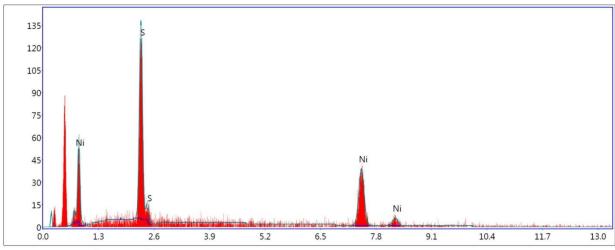

Lsec: 3.2 0 Cnts 0.000 keV Det: Apollo X-SDD Det

Fig. S5. TEM-EDS results of Ni₃S₄:Co (0.51 at.%).

Table S1. The atomic percentage of each element for Ni₃S₄:Co (0.51 at.%).

Element	Line Type	Atomic Percentage	Standard Sample Lable	·
S	K	57.14	FeS	
Ni	K	42.35	Ni	
Со	K	0.51	Со	
Total		100		

The peaks of Co, Ni and S can be clearly observed in the energy dispersive spectrometer (EDS) pattern as shown in **Fig. S5.** The atomic percentages of S and Ni are 57.14%, and 42.35% respectively (shown in **Table S1**.).

Lsec: 10.8 0 Cnts 0.000 keV Det: Apollo X-SDD Det

Fig. S6. TEM-EDS results of Ni_3S_4 :Co (0.51 at.%).

Table S2. The atomic percentage of each element for pure Ni₃S₄.

Element	Line Type	Atomic Percentage	Standard Sample Lable	
S	K	55.16	FeS	
Ni	K	44.84	Ni	
Total		100		

The peaks of Ni and S can be clearly observed in the energy dispersive spectrometer (EDS) pattern as shown in Fig. S6. The atomic percentages of S and Ni are 55.16%, and 44.84% respectively (shown in Table S2).

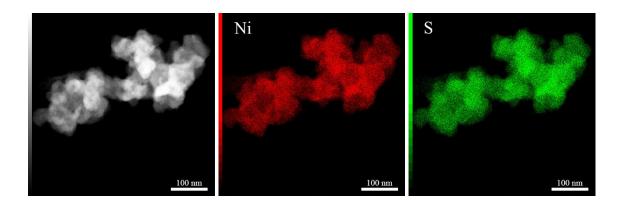


Fig. S7. Elemental mapping images of Co and S respectively of pure Ni₃S₄.