Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting information

Synthesis, structural characterization, in silico ADMET and molecular docking studies of Schiff base derived from 4-hydroxybenzaldehyde and 4-aminobenzoic acid

Patryk Nowak and Artur Sikorski*

Faculty of Chemistry, University of Gdansk, W. Stwosza 63, 80-308 Gdansk, Poland

E-mail corresponding author: artur.sikorski@ug.edu.pl

<u>Melting point</u>

Fig. S1. Melting grade curves for the title compound. Measurements were conducted simultaneously on three samples (a-c) with a gradient of 1° C/min.

Hirshfield surface

Fig. S2. Visualization of Hirshfeld surface for the asymmetric unit of obtained compound using the parameters: d_{norm} (a), shape index (b), curvedness (c), and fragment patch (d).

Fig. S3. Energy values between molecular pairs for each independent molecule in asymmetric unit. For clarity, only interactions with -*E* < 15 kJ/mol are displayed.

Compound	hemihydrate of 4-(4-hydroxybenzylidene)aminobenzoic acid
Chemical formula	$C_{28}H_{22}N_2O_6\cdotH_2O$
FW/g·mol⁻¹	500.51
Crystal system	monoclinic
Space group	<i>P</i> 2 ₁ /n
<i>a</i> /Å	8.6372(3)
b/Å	11.4481(4)
<i>c</i> /Å	24.7299(9)
α/°	90
6/°	94.210(3)
γ/°	90
V/ų	2438.70(14)
Ζ	4
7/К	291(2)
λ_{Mo} /Å	0.71073
$ ho_{calc}/ extrm{g}\cdot extrm{cm}^{-3}$	1.363
F(000)	1048
µ/mm ⁻¹	0.099
ϑ range/°	3.30-25.00
Completeness of $\vartheta/\%$	99.8
Reflections collected	35631
Reflections unique	4288
Data (rostraints / parameters	[R _{int} = 0.0520]
$C_{\rm cool}$	1 005
Einal R value $(1 > 2\sigma(1))$	0.0496
Eincluw Paraluo $(1 > 2\sigma(1))$	0.0450
$\begin{array}{c} \text{Final WN}_2 \text{ value } (1/20(1)) \\ \text{Final P, value (all data)} \end{array}$	0.0762
Final κ_1 value (all data)	0.0705
Find WK ₂ value (dii udta)	0.2205 and 0.2000
	0.3335 aliu -0.2880
CCDC number	2352237

Tab. S1. Crystal data and structure refinement for title compound.

Tab. S2. Hydrogen bonds geometry for title compound.

D-H···A	<i>d</i> (D–H)[Å]	<i>d</i> (H…A)[Å]	<i>d</i> (D…A [Å]	∠D–H…A [°]
O(1W)–H(2W)…N(1)	0.91(2)	1.94(2)	2.835(2)	167(2)
O(1W)–H(1W)…N(21) ⁱ	0.87(3)	2.06(3)	2.915(2)	167(3)
O(15)–H(15)…O(36)	0.87(4)	1.79(4)	2.654(2)	177(6)
O(16)–H(16)…O(35)	0.86(4)	1.78(4)	2.625(2)	170(4)
O(17)–H(17)…O(1W) ⁱⁱ	0.95(3)	1.64(3)	2.582(2)	171(3)
O(35)–H(35)…O(16)	0.87(4)	1.76(4)	2.625(2)	175(3)
O(36)–H(36)…O(15)	0.86(5)	1.80(5)	2.654(2)	171(6)
O(37)–H(37)…O(17) ⁱⁱⁱ	0.95(2)	1.76(2)	2.695(2)	170(3)
C(3)–H(3)…O(1W)	1.16(3)	2.31(3)	3.411(4)	158(2)
C(7)−H(7)…O(37) ^{iv}	1.09(3)	2.40(3)	3.464(3)	166(3)
Symmetry code: (i) 3/2+x.1/	2-y.1/2+z; (ii) 1/2-x	1/2+y.3/2-z; (iii)	-2+x.y1+z; (iv) -	3/2-x1/2+y.1/2-z

Tab. S3. C–H… π interactions geometry for obtained compound.

C–H…Cg	d(H…Cg) [Å]	d(C…Cg) [Å]	∠C–H…Cg [°]
C21–H21…Cg2	3.08	3.56	107.7
C9–H9…Cg1	3.79	3.72	78.0
C26–H26…Cg2	3.47	3.47	87.2
C4–H4···Cg2	3.63	3.85	93.1
C29–H29…Cg1	3.58	3.91	64.1

Cg represents the centre of gravity of the aromatic ring.

_

_

Tab. S4. N··· π interaction geometry for obtained compound.

Y=X···Cg ^a	d(Y…Cg) [Å]	d(X…Cg) [Å]	∠X–Y…Cg [°]	
C1=N1…Cg2	3.79	3.74	78.2	
<u> </u>	C 11 C.1			

Cg represents the centre of gravity of the aromatic ring.

Tab. S5. C–O···π interactions	geometry for	[·] obtained	compound.
-------------------------------	--------------	-----------------------	-----------

X–Y···Cg ^a	d(Y…Cg) [Å]	d(X…Cg) [Å]	∠X–Y…Cg [°]
C34–O35…Cg1	3.38	3.60	89.4
C14–O16…Cg1	3.43	3.64	70.4
Syn	nmetry code: (i) 1-x	, -y, 1-z.	

Cg represents the centre of gravity of the aromatic ring.

Physicochemical Properties Formula $C_{14}H_{11}NO_3$ 241.24 Molecular weight (MW) 18 Num. heavy atoms 12 Num. arom. heavy atoms 3 Num. rotatable bonds 4 Num. H-bond acceptors 2 Num. H-bond donors Molar refractivity (MR) 69.12 69.89 Topological polar surface area (TPSA) Lipophilicity Log Po/w (iLOGP) 1.79 Log Aab.(STOGRa)-likeness parameters for 4-{(E)-[(4-hydroxyphenyl)methyadene]amino Log Po/w (WLOGP) 2.84 benzenesulfonamide. Log P_{o/w} (MLOGP) 2.14 Log Po/w (SILICOS-IT) 2.77 **Physicochemical Properties** Consensus Log Po/w $C_{13}H_{12}^{2}N_{2}O_{3}S$ Water Solubility 276.31 Volecular weight (MW) -3,14 1.76e-01 mg/m1;7.30e-04 mol/l Log S (ESOL) Num. Heavy atoms Solubility Num. Arom. Heavy atoms Soluble Norms (Rotit)atable bonds -3350 Apply bility ond acceptors 7.65e-02 mg/mb; 3.17e-04 mol/l Solyble Nam. H-bond donors Log S (SILICOS-IT) Molar refractivity (MR) Solubility Fonological polar surface area (TPSA) -3.81 73.16 3.71e-02 mg/ml ; 1. 101.13 Soluble 54e-04 mol/l Pharingphilicityics 698 BoorptionP) Hizr 1483 BBBB Pperntean(P3) pogoPsubstrateGP) 2187 E9# PAZ (HAILORGP) 9.P7 E9# 2019(AHHAAATIT) 1₩5 EPP2EDSHISHEDECPO/W 1,65 Water Solubility CYP2D6 inhibitor No -2472 EVB SALASAH) bitor 5.22e-01 mg/07 cm/89e-03 mol/l فولي المراجع الم Class Soluble Druglikeness Basa Alibity Score 6.99 Solubility 1.92e-02 mg/ml ; 6.94e-04 mol/l Medicinal Chemistry PANS Log S (SILICOS-IT) Solyble Solubility Soluble Class Synthetic accessibility Pharmacokinetics GI absorption High **BBB** permeant No P-gp substrate No CYP1A2 inhibitor No CYP2C19 inhibitor No CYP2C9 inhibitor No CYP2D6 inhibitor No CYP3A4 inhibitor No Log K_p (skin permeation) -6.97 cm/s Druglikeness **Bioavailibity Score** 0.55

Tab. S6. Drug-likeness parameters for obtained Schiff base ligand.

Medicinal Chemistry

PAINS	0
Brenk	1
Leadlikeness	Yes
Synthetic accessibility	2.39

<u>Protox III data</u>

 Tab. S8. Toxicology data for 4-{(E)-[(4-hydroxyphenyl)methylidene]amino}benzoic acid.

Classification	Target	Prediction	Probability
Organ toxicity	Hepatotoxicity	Active	0.66
Organ toxicity	Neurotoxicity	Active	0.54
Organ toxicity	Nephrotoxicity	Active	0.67
Organ toxicity	Respiratory toxicity	Active	0.64
Organ toxicity	Cardiotoxicity	Inactive	0.68
Toxicity end points	Carcinogenicity	Inactive	0.55
Toxicity end points	Immunotoxicity	Inactive	0.99
Toxicity end points	Mutagenicity	Inactive	0.55
Toxicity end points	Cytotoxicity	Inactive	0.76
Toxicity end points	BBB-barrier	Inactive	0.52
Toxicity end points	Ecotoxicity	Inactive	0.59
Toxicity end points	Clinical toxicity	Active	0.50
Toxicity end points	Nutritional toxicity	Inactive	0.82
Tox21-Nuclear receptor signalling	And hydrocarbon Peccenter (AbB)	Activo	0.54
pathways		ALLIVE	0.54
Iox21-Nuclear receptor signalling	Androgen Receptor (AR)	Inactive	0.98
Tox21-Nuclear receptor signalling	Androgen Receptor Ligand Binding Domain		0.00
pathways	(AR-LBD)	Inactive	0.99
Tox21-Nuclear receptor signalling	Aromatase	Inactive	0.85
patnways Tox21-Nuclear recentor signalling			
pathways	Estrogen Receptor Alpha (ER)	Active	0.75
Tox21-Nuclear receptor signalling	Estrogen Receptor Ligand Binding Domain (ER-	Active	0.53
pathways	LBD)		0.00
pathways	Gamma (PPAR-Gamma)	Inactive	0.97
Toy 21 Stross rosponso nathways	Nuclear factor (erythroid-derived 2)-like	Inactivo	0.04
TOX21-Stress response pathways	2/antioxidant responsive element (nrf2/ARE)	mactive	0.94
Tox21-Stress response pathways	Heat shock factor response element (HSE)	Inactive	0.94
Tox21-Stress response pathways	Mitochondrial Membrane Potential (MMP)	Inactive	0.56
Tox21-Stress response pathways	Phosphoprotein (Tumor Supressor) p53	Inactive	0.88
Tox21-Stress response pathways	ATPase family AAA domain-containing protein	Inactive	0.66
Molecular Initiating Events	Thyroid hormone receptor alpha (THR α)	Inactive	0.90
Molecular Initiating Events	Thyroid hormone receptor beta (THRβ)	Inactive	0.78
Molecular Initiating Events	Transtyretrin (TTR)	Inactive	0.97
Molecular Initiating Events	Ryanodine receptor (RYR)	Inactive	0.98
Molecular Initiating Events	GABA receptor (GABAR)	Inactive	0.96
Molocular Initiating Events	Glutamate N-methyl-D-aspartate receptor	Inactivo	0.02
worecular mitiating events	(NMDAR)	mactive	0.92
Molecular Initiating Events	alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionate receptor (AMPAR)	Inactive	0.97
Molecular Initiating Events	Kainate receptor (KAR)	Inactive	0.99
Molecular Initiating Events	Achetylcholinesterase (AChE)	Active	0.66
Molecular Initiating Events	Constitutive androstane receptor (CAR)	Inactive	0.98
Molecular Initiating Events	Pregnane X receptor (PXR)	Inactive	0.92
Molecular Initiating Events	NADH-quinone oxidoreductase (NADHOX)	Inactive	0.97
Molecular Initiating Events	Voltage gated sodium channel (VGSC)	Inactive	0.95

Molecular Initiating Events	Na+/I- symporter (NIS)	Inactive	0.98
Metabolism	Cytochrome CYP1A2	Inactive	0.63
Metabolism	Cytochrome CYP2C19	Inactive	0.75
Metabolism	Cytochrome CYP2C9	Inactive	0.65
Metabolism	Cytochrome CYP2D6	Inactive	0.83
Metabolism	Cytochrome CYP3A4	Inactive	0.83
Metabolism	Cytochrome CYP2E1	Inactive	0.99

 Tab. S9. Toxicology data for 4-{(E)-[(4-hydroxyphenyl)methylidene]amino}benzenesulfonamide.

Classification	Target	Prediction	Probability
Organ toxicity	Hepatotoxicity	Inactive	0.58
Organ toxicity	Neurotoxicity	Inactive	0.88
Organ toxicity	Nephrotoxicity	Inactive	0.6
Organ toxicity	Respiratory toxicity	Inactive	0.55
Organ toxicity	Cardiotoxicity	Inactive	0.61
Toxicity end points	Carcinogenicity	Active	0.58
Toxicity end points	Immunotoxicity	Inactive	0.99
Toxicity end points	Mutagenicity	Inactive	0.78
Toxicity end points	Cytotoxicity	Inactive	0.87
Toxicity end points	BBB-barrier	Active	0.69
Toxicity end points	Ecotoxicity	Inactive	0.72
Toxicity end points	Clinical toxicity	Active	0.51
Toxicity end points	Nutritional toxicity	Inactive	0.72
Tox21-Nuclear receptor signalling pathways	Aryl hydrocarbon Receptor (AhR)	Inactive	0.93
Tox21-Nuclear receptor signalling pathways	Androgen Receptor (AR)	Inactive	0.96
Tox21-Nuclear receptor signalling pathways	Androgen Receptor Ligand Binding Domain (AR-LBD)	Inactive	0.99
Tox21-Nuclear receptor signalling pathways	Aromatase	Inactive	0.95
Tox21-Nuclear receptor signalling pathways	Estrogen Receptor Alpha (ER)	Inactive	0.90
Tox21-Nuclear receptor signalling pathways	Estrogen Receptor Ligand Binding Domain (ER-LBD)	Inactive	0.93
Tox21-Nuclear receptor signalling pathways	Peroxisome Proliferator Activated Receptor Gamma (PPAR-Gamma) Nuclear factor (ervthroid-derived 2)-like	Inactive	0.99
Tox21-Stress response pathways	2/antioxidant responsive element (nrf2/ARE)	Inactive	0.99
Tox21-Stress response pathways	Heat shock factor response element (HSE)	Inactive	0.99
Tox21-Stress response pathways	Mitochondrial Membrane Potential (MMP)	Inactive	0.61
Tox21-Stress response pathways	Phosphoprotein (Tumor Supressor) p53	Inactive	0.88
Tox21-Stress response pathways	ATPase family AAA domain-containing protein 5 (ATAD5)	Inactive	0.99
Molecular Initiating Events	Thyroid hormone receptor alpha (THR α)	Inactive	0.83
Molecular Initiating Events	Thyroid hormone receptor beta (THR β)	Inactive	0.72
Molecular Initiating Events	Transtyretrin (TTR)	Inactive	0.59
Molecular Initiating Events	Ryanodine receptor (RYR)	Inactive	0.87
Molecular Initiating Events	GABA receptor (GABAR)	Inactive	0.94
Molecular Initiating Events	Glutamate N-methyl-D-aspartate receptor (NMDAR)	Inactive	0.98

Molecular Initiating Events	alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionate receptor (AMPAR)	Inactive	0.99
Molecular Initiating Events	Kainate receptor (KAR)	Inactive	1
Molecular Initiating Events	Achetylcholinesterase (AChE)	Inactive	0.85
Molecular Initiating Events	Constitutive and rostane receptor (CAR)	Inactive	1
Molecular Initiating Events	Pregnane X receptor (PXR)	Inactive	0.63
Molecular Initiating Events	NADH-quinone oxidoreductase (NADHOX)	Inactive	0.97
Molecular Initiating Events	Voltage gated sodium channel (VGSC)	Inactive	0.56
Molecular Initiating Events	Na+/I- symporter (NIS)	Inactive	0.96
Metabolism	Cytochrome CYP1A2	Inactive	0.93
Metabolism	Cytochrome CYP2C19	Inactive	0.58
Metabolism	Cytochrome CYP2C9	Inactive	0.57
Metabolism	Cytochrome CYP2D6	Inactive	0.82
Metabolism	Cytochrome CYP3A4	Inactive	0.87
Metabolism	Cytochrome CYP2E1	Inactive	0.99

Molecular docking data

Tab. S10. Molecular docking results for AC	hF binding with 4-{(F)-[(4-by)	droxyphenyl)methylidene	lamino}benzoic acid
Tab. 310. Molecular docking results for Ac		aroxypricityijinetitynaene	

	Affinity	Distance from best mode	
Wode	(kcal/mol)	R.M.S.D l.b	R.M.S.D u.b
1	-8.2	0.000	0.000
2	-7.5	0.934	8.274
3	-7.4	3.894	4.626
4	-6.9	3.792	4.382
5	-6.7	4.745	6.781
6	-6.7	4.466	6.393
7	-6.5	16.805	17.514
8	-6.3	5.503	7.564
9	-6.2	25.518	26.272

 Tab. S11. Molecular docking results for CA II binding with 4-{(E)-[(4-hydroxyphenyl)methylidene]amino}benzoic acid.

Mada	Affinity	Distance from best mode	
Mode	(kcal/mol)	R.M.S.D l.b	R.M.S.D u.b
1	-6.4	0.000	0.000
2	-6.3	0.812	1.898
3	-5.9	4.798	6.208
4	-5.8	5.135	5.965
5	-5.6	1.459	8.243
6	-5.6	19.510	21.079
7	-5.4	5.048	6.952
8	-5.4	26.113	28.116
9	-5.3	1.381	2.171

	Affinity (kcal/mol)	Distance from best mode	
Mode		R.M.S.D l.b	R.M.S.D u.b
1	-6.8	0.000	0.000
2	-6.1	16.030	19.777
3	-5.9	5.052	8.404
4	-5.9	22.141	24.509
5	-5.9	16.141	18.715
6	-5.8	16.116	18.700
7	-5.8	29.592	29.980
8	-5.7	13.524	14.269
9	-5.7	29.354	31.431

 Tab. S12. Molecular docking results for CA II binding with 4-{(E)-[(4-hydroxyphenyl)methylidene]amino}benzenesulfonamide.