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S1.Experimental section

S1.1. Synthesis of vinylferrocene (compound 1)_Reaction scheme
The reaction scheme for the synthesis of vinylferrocene, following the procedure described in
the “synthetic procedure”, is reported below.
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Scheme S 1 Reaction scheme for the synthesis of vinylferrocene

S1.2. Synthesis of 4-ferrocenylstyrene (compound 2)_Reaction scheme
The reaction scheme for the synthesis of vinylferrocene following the procedure described in the
“synthetic procedure” is reported below.
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Scheme S 2 Reaction scheme for the synthesis of 4-ferrocenylstyrene



S2.Characterisation data

S2.1. Characterisation data for compound 1 (vinylferrocene)
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Fig. S 1 'H-NMR (700 MHz, CDCl3) of compound 1, vinylferrocene.
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Fig. S 2 GC-MS characterisation of compound 1 (vinylferrocene). Chromatogram (upper part) and mass
spectrum (lower part).



Characterisation data for compound 2 (4-ferrocenylstyrene)
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Fig. S 3 'H-NMR (700 MHz, CDCl3) of compound 2, 4-Ferrocenylstyrene.
Chromatogram Sample5_VinylPhenyl-Ferrocene C:\GCMSsolution'Data\Dati\Altri\ Tagliatesta\2023_03_06\Sample5_VinylPhenyl-Ferrocene.qed
TIC
2,186,931
"
E
S Al N'le ?l \: L T T
10.0 20.0 30.0
min
Line#5 R.Time:17.615(Scan#:2724)
MassPeaks:3635
RawMode:Averaged 17.610-17.620(2723-2725) BasePeak:288(472358)
BG Mode:Cale. from Peak Group 1 - Event 1 Scan
10(}: 238
605
30 35 %663 1 os Ml 39 167 159200 23 247260273 J208 310 326337 355 377 303406 424 440452463 455 S04 826537
U L AL L) U LI ) 1 LI LN I | U L L 1 1 1 'I' I L L L 1 L L 1 1 I 1 Ll I Ll L) LI ) T I T L) T
20 50 80 110 140 170 200 230 260 290 320 350 380 410 440 470 500 530 560
m’z

Fig. S 4 GC-MS characterisation of compound 2 (4-ferrocenylstyrene). Chromatogram (upper part) and mass

spectrum (lower part).



Characterisation data for compound 4 (2-Br-5,10,15,20-tetraphenylporphyrin)
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Fig. S 5 *H-NMR (700 MHz, CDCls) of compound 4, 2-Br-5,10,15,20-tetraphenylporphyrin (2-Br-H,TPP).
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Fig. S 6 ESI HR-MS of compound 4, 2-Br-5,10,15,20-tetraphenylporphyrin (2-Br-H,TPP).



S2.4. Characterisation data for compound 5t (E) 2-(ferrocenyl)vinyl-5,10,15,20-
tetraphenylporphyrin (trans-isomer)

LT TN MO N OGN T O T N DO T o = — e cwo B
O MNNWOW Nl A A =G 00000000 - W N H
R R Bl eded o e NN MNMNMNNNMNMNN NN [NV} & o o 1300
7N e e TESET T | et N N s
r1200
CDCly
r1100
1000
900
800
r700
600
500
|
i F400
300
r200
! I
100
1
J\\
e - —
iy anl
r~ - n 3 (=
o = e o r-100
=1 = e =
T T T
7.5 7.1 6.9 6.7 4.4 4.2 2.4 2.6

7.3
f1 (ppm)

Fig. S 7 'H-NMR (700 MHz, CDCl3) of compound 5t, (E) 2-(ferrocenyl)vinyl-5,10,15,20-tetraphenylporphyrin
(trans-isomer).
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Fig. S 8 MALDI HR-MS spectrum (full view) of compound 5t, (E) 2-(ferrocenyl)vinyl-5,10,15,20-tetraphenylporphyrin (trans-
isomer).
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Fig. S 9 MALDI HR-MS spectrum (molecular peak) of compound 5t, (E) 2-(ferrocenyl)vinyl-
5,10,15,20-tetraphenylporphyrin (trans-isomer). Theoretical (upper) and experimental
(lower).



$2.5. Characterisation data for compound 5« (a) 2-(ferrocenyl)vinyl-5,10,15,20-
tetraphenylporphyrin (alpha-isomer)
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Fig. S 10 'H-NMR (700 MHz, CDCl3) of compound 5e, («) 2-(ferrocenyl)vinyl-5,10,15,20-tetraphenylporphyrin
(alpha-isomer).
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Fig. S 11 MALDI HR-MS spectrum (full view) of compound 5a, (a) 2-(ferrocenyl)vinyl-5,10,15,20-tetraphenylporphyrin
(alpha-isomer).
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Fig. S 12 MALDI HR-MS spectrum (molecular peak) of compound 5a, () 2-(ferrocenyl)vinyl-
5,10,15,20-tetraphenylporphyrin  (trans-isomer). Theoretical (upper) and experimental
(lower).

11



S2.6. Characterisation data for compound 6t (E) 2-(4’-Ferrocenylstyryl)-5,10,15,20-
tetraphenylporphyrin (trans-isomer)
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Fig. S 13 !H-NMR (700 MHz, CDCl;) of compound 6t, (E) 2-(4’-ferrocenylstyryl)-5,10,15,20-
tetraphenylporphyrin (trans-isomer).
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Fig. S 14 HR-ESI MS of 6t, (E) 2-(4’-ferrocenylstyryl)-5,10,15,20-tetraphenylporphyrin (trans-isomer).




Characterisation data for compound 6a (a) 2-(4’-Ferrocenylstyryl)-5,10,15,20-
tetraphenylporphyrin (alpha-isomer)
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Fig. S 15 IH-NMR (700 MHz, CDCl;) of compound 6e, () 2-(4’-ferrocenylstyryl)-5,10,15,20-
tetraphenylporphyrin (alpha-isomer).
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Fig. S 16 HR-ESI MS of 6a;, () 2-(4’-ferrocenylstyryl)-5,10,15,20-tetraphenylporphyrin (alpha-isomer).



Characterisation data for compound 7t (E) 2-styryl-5,10,15,20-tetraphenylporphyrin (trans-
isomer)
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Fig. S 17 'H-NMR (700 MHz, CDCls) of compound 7t, (E) 2-styryl-5,10,15,20-tetraphenylporphyrin (trans-
isomer).
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Fig. S 18 HR-ESI MS of 7t, (E) 2-styryl-5,10,15,20-tetraphenylporphyrin (trans-isomer).



Characterisation data for compound 7« (a) 2-styryl-5,10,15,20-tetraphenylporphyrin (alpha-
isomer)

cocl,
450

+400
350
iy e — F300

250

200

5.64

150

=}
aQ
w

100

-—-2.65

50

g1 100]

Fig. S 19 H-NMR (700 MHz, CDCls) of compound 7a, (c) 2-styryl-5,10,15,20-tetraphenylporphyrin (alpha-
isomer).
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Fig. S 20 HR-ESI MS of 7¢;, () 2-styryl-5,10,15,20-tetraphenylporphyrin (alpha-isomer).
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Characterisation data for compound 9t (E) 1-Ferrocenyl-2-phenylethene (trans-isomer)
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Fig. S 21 *H-NMR (700 MHz, CDCls) of compound 9t, (E) 1-ferrocenyl-2-phenylethene (trans-isomer).
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Fig. S 22 GC-MS characterisation, mass spectrum of compound 9t ((E) 1-Ferrocenyl-2-phenylethene, trans-
isomer), r.t. = 18.1 min.
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Characterisation data for compound 9« (a) 1,1-ferrocenyl-phenylethene (alpha-isomer)
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Fig. S 23 1H-NMR (700 MHz, CDCl;) of compound 9e, () 1,1-ferrocenyl-phenylethene (alpha-isomer).
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Fig. S 24 GC-MS characterisation, mass spectrum of compound 9« ((a) 1-Ferrocenyl-2-phenylethene, alpha-
isomer), r.t. = 16.69 min.
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S2.12.

Characterisation data for compound 10t (E) 4-ferrocenylstilbene (trans-isomer)
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Fig. S 25 'H-NMR (700 MHz, CDCl3) of compound 10t, (E) 4-ferrocenylistilbene (trans-isomer).
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Fig. S 26 GC-MS characterisation, mass spectrum of compound 10t ((E) 4-ferrocenylstylebene, trans-isomer),
r.t. =27.31 min.
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$2.13. Characterisation data for compound 10« (a) 4-ferrocenylstilbene (alpha-isomer)
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Fig. S 27 *H-NMR (700 MHz, CDCl3) of compound 10e;, () 4-ferrocenyistilbene (alpha-isomer).

Line#3 R.Time:23.535(Scan:3908)

MassPeaks:445

RawMode: Averaged 23.530-23.540(3907-3909) BasePeak:364(854491)
BG Mode:Calc. from Peak Group 1 - Event 1 Scan
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Fig. S 28 GC-MS characterisation, mass spectrum of compound 10e (( ) 4-ferrocenylstylebene, alpha-isomer),
r.t. = 23.54 min.
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$2.14. Characterisation data. 'H-NMR spectra comparison of meta- and para-phenyl
protons of the two isomer 5t (trans) and 5« (alpha)
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Fig. S 29 Comparison of 'H-NMR spectra, recorded in CDCl; solution at 298 K, of the two isomers
trans-5t (dark red) and alpha-5a (cyano), showing the downshift of the triplet signal of the
proton in relative para-position on the porphyrin meso-phenyl ring attached to C20. This
downshift is likely due to strong n-interaction, occurring in the alpha-isomer, between
substituted cyclopentadienyl ring of ferrocene (red filled) and the meso-phenyl ring on C20 of
the porphyrin ring (yellow filled).
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$2.15. Characterisation data for the two isomers 5t and 5. Bidimensional NMR study

Figure S30 shows the 'H-NMR spectrum of one of the products 5a obtained from the Heck
coupling between B-brominated porphyrin and vinylferrocene. Analysis of the signals revealed the
presence of the expected seven pyrrolic hydrogens between 8.6 and 9.0 ppm. However, the region
between 7.5 and 8.4 ppm showed signals of only three phenol rings plus a triplet that integrates for
one proton. Two signals in the region between 5.1 and 5.5 ppm were tentatively assigned to protons
attached to sp2 carbons. Finally, a signal integrating for five hydrogens at 4.0 ppm was assigned to
the unsubstituted ring of ferrocene, whereas the two expected signals of the substituted ring were
not observed.
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Singlet->a f3 I ‘ 2 HC=signals

position is
substituted
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Fig. S 30 H-NMR at 700 MHz (298 K) of a product from the Heck coupling between [-brominated porphyrin and vinylferrocene
dissolved in CDCls. In red are the relative integrals.

The zoom of the 1H-13C multiplicity edited HSQC shown in Figure S31 A confirmed the assignment
of the signals belonging to the observable phenyl rings. Figure S31 B shows that the observed carbon
chemical shift is compatible with the ferrocene assignment. Signals corresponding to the six [3-
pyrrolic are very broad, probably due to an exchange process. The triplet at 7.6 ppm shows a
correlation with a phenyl carbon; this fact, in addition to its integral value and multiplicity, allowed
us to assign this signal to the para position of the fourth phenyl ring (Figure S31 A). Figure S31C
shows the correlation of the two signals at 5.3 and 5.5 ppm with an oppositive phase with respect
to the other signals. This reveals that they belong to a CH, group. Given their chemical shift, we can
assign them to a terminal position of a double bond.

Raising the temperature to 318 K yielded the appearance of broad signals bolded in yellow in
Figure S32 A.
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Fig. S 31 1H-13C multiplicity edited HSQC of three different regions. Positive (black) and negative (red) signals are relative
to CH and CH, groups, respectively.
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Fig. S 32 Comparison of the *H-NMR spectra of the same compound recorded at 318 K (A) and 298 K (B).
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The 'H-H COSY experiment unveiled the coupling between the triplet at 7.5 ppm and the broad
signal at 7.3 ppm, indicating that this signal corresponds to the meta-proton of the fourth phenyl
ring (Figure S33).
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4 phenylring
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phenyl ring
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Fig. S 33 A Region of the 1H-'H COSY at 318 K confirms the meta-proton assignment of
the fourth phenyl ring.

Figure S34 compares two regions of the *H-13C HSQC recorded at two different temperatures. At

the higher temperature (Figure S34 B), we observed the correlation of the three broad signals
detected in the proton spectrum of Figure S32 A. In addition to the already assigned signal at 7.3
ppm belonging to the meta-CH groups of the fourth phenyl ring, we could assign the signal at 7.8
ppm as the ortho-CHs of the same ring and the broad signal 4.05 ppm to two CHs of the substituted
ferrocenyl ring (Figure S34 B).
All these results converge to the possible structure in Figure S35. Due to the proximity of the phenyl
ring and the ferrocene, there is a hindered rotation of these groups, which leads to the broadening
of the ortho- and meta-signals of the phenyl group. Similarly, the CH group of the unsubstituted ring
of the ferrocene also experiences broadening due to an intermediate exchange regime. This occurs
because the phenyl ring and the ferrocene are so close together that they cannot rotate freely,
affecting these groups' signals. The para-hydrogen signal is sharp even at 298 K due to
conformational shift and rotation around the phenyl axis, which does not affect its chemical shift.
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Fig. S 34 Comparison of two regions of *H-13C HSQC recorded at two different temperatures: 298 K (A) and 318 K (B).

The H-'H ROESY and 'H-13C HMBC experiments confirmed this structure as the alpha-isomer.
Figure S36 shows the diagnostic short distances from the ROESY experiment and the long-range
proton-carbon couplings from the HMBC.

Fig. S 35 Proposed structure for one of the unknown products from the Heck coupling
between [brominated porphyrin and vinylferrocene dissolved in CDCls.




Short distances from 'H-'H ROESY @318K

Long range H-C coupling from H-1*CHMBC

Fig. S 36 Arrows indicate the distances observed with ROESY and HMBC diagnostic of the structure of the alpha-isomer.

The spectrum of the second product of the reaction 5t is shown in Figure S37. Differently
from the previous compound, this spectrum shows all the expected signals. In particular, the
region between 7.2 and 6.5 ppm shows the presence of two doublets with a coupling constant
of 16 Hz, indicating that they are positioned in trans. In addition to this information, a complete
set of bidimensional NMR experiments was recorded, allowing us to confirm the structure of the
H,-2-(ferrocenyl)vinyl-5,10,15,20-tetraphenylporphyrin trans-isomer.
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Fig. S 37 1H-NMR spectrum of H,-2-(ferrocenyl)vinyl-5,10,15,20-tetraphenylporphyrin trans-isomer at 700 MHz (298 K)

in CDCl;
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$3.Cyclic Voltammetry measurements

S3.1. Cyclic voltammetry of free ferrocene as reference compound
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Fig. S 38 Cyclic Voltammetry of 2mM ferrocene in 0.1M TBAP dichloromethane
solution recorded at 10 mV step and 100mV/s rate.
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S3.2. CV and DPV measurements of the two isomers 5t and 5«
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Fig. $39 5t (0.75 mM, red line) and 5 (1mM, blu line) electrochemical characterisation in 0.1 M TBAP dichloromethane solution.
a) cyclic voltammetry cathodic scan, b) cyclic voltammetry anodic scan; c) differential pulse voltammetry cathodic scan and d)
differential pulse voltammetry anodic scan. In DPV cathodic scan it’s possible to observe a small shoulder between -0.9 V and -
1.1 Vin both isomers, most likely due to an irreversible electrochemical reaction involving ethylene bridge. Something similar is
also observable in the respective anodic scan, between 0.9 and 1 V but to a minor extent.

S3.3. CV and DPV measurements of ferrocene reference compounds 9t, 9¢, 10t, 10
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Fig. S 40 Cyclic Voltammetry of 1ImM solution of ferrocene reference compounds 9t (1-ferrocenyl-2-phenylethene_trans),
9a (1,1-ferrocenyl-phenylethene_alpha), 10t (4-ferrocenylstilbene_trans) and 10« (4-ferrocenylstilbene_alpha) in 0.1M
TBAP dichloromethane solution recorded at 10 mV step and 100mV/s rate. The reference compound 9ais not stable under
analytical conditions and the second wave observable at about 0.7 V can be ascribable to chemical reaction occuring on
the electrode surface.
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S3.4. CV and DPV measurements of the two isomers 6t and 6«
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Fig. S 41 H,TPP (1 mM purple line), 6t (1mM, orange line) and 6 (1mM, gray line) electrochemical characterisation in 0.1 M TBAP
dichloromethane solution. a) cyclic voltammetry cathodic-anodic scan, b) differential pulse voltammetry cathodic and anodic.

S4.Photochemical characterisation data

UV-vis absorption spectra of ferrocene reference compounds 9t, 9¢, 10t, 10
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Fig. S 42 Normalized UV-vis spectra of ferrocene reference compounds 9t, 9a, 10t and 10 recorded in dichloromethane solution.
a) Whole spectrum. b) Zoom-in in the longer wavelength region.
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Fluorescence Excitation spectra of compounds 5t, 5¢, 6t, 6, 7t and 7
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Fig. S 43 Fluorescence excitation spectra of alpha-isomers of compound 5 (central coloumn) 6 (right coloumn) and 7 (left coloumn).
In the first row the emission spectra of each compound was reported, exciting on both the blue (410 nm) and red (435 nm) side of
the Soret band. In the second row the corresponding excitation spectra were reported. In the third row a zoom-in on the porphyrin

Q bands were reported. Porphyrin beta-substituents are depicted in the central row on their respective excitation spectra. NO Aeyc.
dependence emission was observed for the alpha-isomers.
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7t 2-Styryl-TPP t-isomer corrected emission 5t 2-FcVinyl-TPP t-isomer corrected emission 2-FcPhEL-TPP t-isomer corrected emission

Excitation spectra of 2-(4"-FcStyryl)TPP trans

SE—

Fig. S 44 Fluorescence excitation spectra of trans-isomers of compound 5 (central coloumn) 6 (right Coloumn) and 7 (left coloumn).
In the first row the emission spectra of each compound was reported, exciting on both the blue (410 nm) and red (435 nm) side of
the Soret band. In the second row the corresponding excitation spectra were reported. In the third row a zoom-in on the porphyrin
Q bands were reported. Porphyrin beta-substituents are depicted in the central row on their respective excitation spectra. A
dependence emission is clearly observable.

Fluorescence emission of ferrocene and H,TPP (7.8 uM) 1:1 ratio in dichloromethane solution.
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Fig. S 45 Fluorescence emission spectra of H,TPP and an equimolar amount of H,TPP and Ferrocene in 1:1 ratio (7.8 uM) in
dichloromethane solution (left) along with the corresponding UV-vis aborbance spectrum (right). Porphyrin fluorescence was
normalized for the absorbance value (=0.1) at excitation wavelength (515 nm).

The fluorescence emission spectra of an equimolar concentration (7.8 uM) of H,TPP and
Ferrocene at 1:1 ratio was recorded in dichloromethane solution and compared to that of the
only H,TPP with equal concentration (Ae. = 515 nm). In the H,TPP/ferrocene mixture, the
porphyrin fluorescence was quenched by only 8%, showing a possible electron-transfer under
diffusive control occurring on a timescale slower than those observed in the porphyrin-ferrocene
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dyads. This aspect can further confirm the important role played by the different linkers in
favouring the intramolecular electron-transfer process in all the alpha- and trans-isomers of the
porphyrin-ferrocene dyads.

Time resolved fluorescence measurements of compounds 5t, 5a, 6t, 6a, 7t and 7a.

Fluorescence decay measurements for the porphyrin alpha-isomers Fluorescence decay measurements for the parphyrin trans-isomers
10000 - 10000
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1000 o 1000 4
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0 l‘D 2‘0 3‘0 4‘0 ;0 ) ';0. . "7I0 8’0 9‘0 100 1-+— T
Time (ns) [1] 10 20 30 40 . 50 60 70 80 90 100
Time (ns)
Fig. S 46 Time resolved fluorescence decay of compounds 5¢, 6, and 7 on the left and compounds 5t, 6t and 7t on the right, recorded
in dichloromethane solution after laser excitation at 440 nm.

Compound T4 (ns) T, (ns) B1 B2 x> ¢ 0/b7e,  <T>  <T>[<T>54
H,TPP 9.07£0.04  2.23+0.03 4394 4345 1.099 0.11 - 5.67 -
7o 7.660.03 1.9+0.1 8362 1612 1.21 0.094 1.000 6.73 1.000
6a 0.415+0.005 7.51+0.09 4814 240 0.979 9.8:103° 0.104 0.75 0.112
50 7.87+0.04 2.6+10.1 7130 2293 1.171 1.2:10% 0.013 0.98 0.978

Table S 1 Fitting results for H,TPP and alpha-isomers 7¢, 6 and 5c. Fluorescence lifetime 1,,,, respective coefficient B1 and B2, y?,
fluorescence quantum yield ¢, fluorescence quantum yield ratio ¢/¢,,, average lifetime <t> and averaged lifetime ratio <t>/<t>;, are
reported.

Compound 71 (ns) T, (ns) B1 B2 x> ¢ O/dn <> <T>[<t>y
H,TPP 9.07+0.04 2.23+0.03 4394 4345 1.099 0.11 - 5.67 -
7t 6.44+0.08 3.5+0.2 7247 2726 1.04 0.084 1.000 5.62 1.000
6t 6.9910.05 1.30+0.02 1417 3340 1.43 8.2:10% 0.01 3.00 0.533
5t 9.06+0.04 1.46+0.02 3864 5440 1.03 4.2:10% 0.05 4.62 0.821

Table S 2 Fitting results for H,TPP and alpha-isomers 7t, 6t and 5t. Fluorescence lifetime 1y, respective coefficient B1 and B2, %2,
fluorescence quantum yield ¢, fluorescence quantum yield ratio ¢/d;,, average lifetime <t> and averaged lifetime ratio <t>/<1>;,
are reported.

Time resolved fluorescence experiments carried-out in dichloromethane solution give back
the results reported in Table S1 and S2, for alpha- and trans-isomers respectively. Compound
70 and 7t were considered as reference for the alpha- and trans-isomers of the porphyrin-
ferrocene dyads respectively. By comparing the averaged lifetime ratio <t>/<t>;, of compounds
60 and 5a with respective fluorescence quantum yield ratio ¢/¢7,, it is possible to observe quite
similar values for the dyad 6a. (¢g./¢7o = 0.10 and <t>¢, /<T>7,=0.11), on the contrary this does
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not occur for dyad 5a, a similar result was also observed for the trans-isomers 5t and 6t, whose
<1>/<1>7 values are much higher than respective ¢/ values. This implies that for compounds
5a, 5t and 6t the fluorescence decay due to possible electron-transfer (ET) is too fast to be
observed within the instrument timescale (0.1 ns) and we can appreciate and measure the
fluorescence lifetime related to possible ET only for the dyad 6a, whose lifetime value (1, = 0.4
ns) is in good agreement with the respective fluorescence quenching compared to compound
70. used as reference. At the same time these evidences support the hypothesis that the
fluorescence quenching has a kinetic nature starting from the porphyrin excited state rather
than it is due to a ground state interaction between the two chromophores. An aspect also
excluded by cyclic-voltammetry and UV-vis measurements, the first one underlines no variation
in the first oxidation and reduction potential of the ferrocene and porphyrin chromophores
respectively in all the dyads and, at the same time, we observe almost identical UV-vis spectrum
within the two series 7a, 6a, 5a, and 7t, 67, 5t. Two results that reveal no or very small variations
in the ground state energy levels within the alpha- and trans-isomer series respectively. Similar
outcomes can be obtained even if H,TPP is used as reference compound.

To assess the thermodinamic feasibility of charge separation (CS) process, the driving force

of electron-transfer (AGgy) was calculated following the Rehm-Wellers! approach by using the
equations reported below:

1) AGgr = e(Epyp = Egeqa) = Ego + AG,

) e
2Ry 2R, )\egr  &ref) Rpagpr

3) AGer == €(Epyp — Epeqa) — AG

62

AG

N

2) 4me

where Eg,p and Egegp are the oxidation and reduction potential of Donor and Acceptor
respectively measured by cyclic voltammetry experiments, E*y is the energy of the first excited
state of the porphyrin which can be estimated from the intercrossing point of the normalized
absorption and emission spectra. The parameters Rpa, Rp, and Rpa are calculated from the
ground state geometry of the dyad optimized by DFT at the B3LYP/6-31+G(d) level of theory.
The Rp and R, illustrate the radius of the ferrocene donor and porphyrin acceptor, respectively
while Rpa is the center-to-edge distance between the two chromophores calculated from the
ferrocene iron atom to the f-substituted carbon atom of the porphyrin. The g and g are the
dielectric constant of the reference solvent used in the electrochemical measurement and the
solvent used for the determination of the CS. Here, both the electrochemical and fluorescence
measurements were performed in dichloromethane (DCM, € = 8.9), so that the AG, formula can
be simplified as follow:

o2
AG = —
dmegeprRp,
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Results are reported in the Table S3. The driving force for the charge separation is negative
for all the porphyrin-ferrocene dyads and tends to decrease a little with increasing Rpa value,
neverteless this trend was not observed in the porphyrin fluorescence quenching of the dyads,
where compound 6t, with the highest Rps value, presents also the highest quenching of the
porphyrin emission, underlining a possible role of the linker in the process as postulated also for
the other compounds 5a, 5t and 6a..

Compound E*y (eV) Rpa (A) Eoxp (FC)  Egedn (P) AGer(eV) AGcr (eV) AGs (eV)

H,TPP 1.91 - - - - - -
7a 1.90 - - - - - -
7t 1.89 - - - - - -
5a 191 4.03 0.47 -1.24° -0.60 -1.31 -0.40
5t 1.87 5.40 0.48 -1.22 -0.47 -1.40 -0.30
6a 191 8.25 0.48 -1.23 -0.40 -1.51 -0.19
6t 1.87 9.52 0.48 -1.18 -0.38 -1.50 -0.17

Table S 3 Calculated free energy values of charge recombination (CR), electron-transfer (ET) and solvent reorganization energy (S)
following adopting the Rehm-Weller equation 1), 2) and 3). ° = first porphyrin reduction potential from DPV measurements.

Fluorescence emission spectra of dyad 6a. in different solvents (toluene, dichloromethane and

acetonitrile)
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Fig. S 47 steady-state fluorescence emission of dyad 6« (black) in different solvents (Toluene-left, dichloromethane-center and
acetonitrile-right) compared to that of the H,TPP (purple).

Dyad 6a was used as probe to test the solvent effect on the possible electron-transfer

mechanism occurring in polar solvents. As it possible to see from the graphs in figure S47 the
fluorescence emission of 6a. tends to decrease passing from less polar (toluene € = 2.4) to much
polar solvents (dichloromethane and acetonitrile with € = 8.9 and ¢ = 37.5, respectively). The
respective fluorescence quantum vyields are reported in table S4. The solvent dependent
fluorescence quantum yield observed for the dyad 6a is in line with a possible electron-transfer
process as deactivation path of the porphyrin excited state in dichloromethane solution, in
accordance with the negative values of the AGgr calculated. This observation can be easily
transferred to all other dyads that show higher quenching of porphyrin emission in
dichloromethane solution.

Compound ¢_toluene ¢_dichloromethane ¢_acetonitrile
H,TPP 0.11 0.11 0.12
60 0.06 9.8-10°3 2.4-103
Table S 4 Porphyrin fluorescence quantum yield for H,TPPS2 and dyad 6« in different solvents.
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S5.Computational Study

S5.1. Energy and maximum absorption wavelength of trans- and alpha-isomers

The best agreement with experimental UV-VIS data, that was taken as benchmark to assesss the
validity of the DFT approach, was found for B3LYP functional and 6-31 G(d) basis set with PCM
treatment of the solvent, that predicts the absorption peak maximum with larger accuracy than the
other methods tested, in spite of the smaller complexity of the approach. Apparently anomalous
trends like this have already been described with PCM calculations of spectroscopic properties in
the past, the reason for error cancellations being not always straightforward to be identified. [L.
Gontrani, B. Mennucci, J. Tomasi, “Glycine and alanine: a theoretical study of solvent effects upon
energetics and molecular response properties”, J. Mol. Struct. Theochem 500 (1-3), 117-127 (2000)
10.1016/50166-1280(00)00390-0]. The calculated values for trans and alpha isomers, i. e. the four
structures considered in this work that share the same connectivity (stereoisomers), are reported
in table S1 and are +3.6 nm and +13.2 nm redshifted with respect to measured spectra in the case
of the 5t and 5aisomer respectively; the calculated shift between the two isomers is 5.6 nm, slightly
higher than the experimental value (4 nm) but overall satisfactory. Similar observation can be done
for the ferrocene-porphyrin dyads 6t and 6a. It is interesting to notice that in both cases the
predicted absorption spectra of the trans-isomers show higher Q/Soret band ratio as reported in
the experimental UV-vis spectra. The good reproduction of UV-Vis spectra of the trans-alpha pairs
of isomers, made us confident about the validity of the method chosen, and of the (relative)
calculated energies as well as of the geometrical parameters of the two isomers. Among the two
stereoisomers, the trans form is calculated to have the lower energy, with the alpha form being
higher in energy by about 7.3 kCal/mol. The calculated UV-Vis spectrum of the isomers considered
in the main article (trans and alpha) are reported in fig S45 as well, with the alpha isomers featuring
a main peak at 433.2 nm. The energy of this form is the highest of the pool (+7.28 Kcal/mol), though
this energy value should not be directly compared to the trans-isomer, considering that the
connectivity is different in this case, owing to the presence of the CH,= moiety. Regarding the
comparison of experimental and calculated optical data, the deviation ranges from 0.9 to 1.8% for
the trans-isomers 5t and 6t respectively, and about 3% for the alpha form, that is erroneously
predicted to have a larger wavelength than the trans form. Interestingly, the computational analysis
confirms the larger peak width observed for the trans isomer, that is ascribable to the presence of
several contributing vertical transitions of sizeable intensity besides the central one, supporting the
view that in this case the conjugation extent is larger. Overall, we can state that the prediction of
UV-VIS spectra with the chosen theoretical method is quite satisfactory.

Isomer  Energy (a.u.) Difference (kCal/mol) Exp Ama(nm)(DCM) Theo Apma(nm)(DCM)

5t Trans | -3640.6745 0 424 427.6
5a_Alpha | -3640.6629 +7.28 420 433.2
6t_Trans | -3640.6745 0 424 431.8
6a Alpha | -3640.6629 +7.28 421 433.2

Table S 5 Calculated energies and maximum absorption wavelength in the range 200-900 nm
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Fig. S 48 Calculated TD-DFT UV-Vis spectra of trans and alpha isomers of ferrocene-porphyrin dyad 5 and 6 on the left (a) and
right (b) part respectively . Trans: red and alpha: blue. Dichloromethane solvent effect is modelled with PCM method.

Regarding the geometrical parameters, all the structures share the quasi-planarity of the core
porphyrin rings, that are scarcely perturbed by the different substitution modes and show a very
small curvature. Yet, a noteworthy structural feature that has to be considered in order to
appraise the electronic conjugation between porphyrin and ferrocene systems, is the value of
the dihedral angle (torsion) between the carbon atom adjacent to B-pyrrole nitrogen and the
carbon atom of the ferrocene cyclopentadienyl ring in the case of the dyad 5t and 5« or the
carbon atom of the phenyl ring in the case of the dyads 6t and 6a. The calculated values are -
27.93 (trans) and -64.32 (alpha) degrees in the couple 5t-5¢, and -25.95 (trans) and -59.03
(alpha) degrees in the couple 6t-6¢, signalling a progressively deviation from planarity and a
consequent smaller conjugation extent.
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S5.2. Relative HOMO-LUMO energy levels of the compounds 5t and 5«
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Fig. S 49 Molecular orbital energy level diagram for trans- (left) and alpha-isomer (right), compounds 5t and 5a
respectively. calculated with Gaussian16. Band gap (eV) for HOMO-LUMO transition is also reported. Select image of
HOMO-1, HOMO, LUMO and LUMO+1 are included to highlight the inversion of the frontier orbital HOMO and HOMO-1
energy level in the two isomers.

Orbitals 5t (trans) E (eV) 5a(alpha) E (eV)

LUMO+1 -2.39 -2.40
LUMO -2.46 -2.45
HOMO -5.05 -5.09

HOMO-1 -5.09 -5.14

Table S 6 Absolute energy (eV) for the first four frontier orbitals of the trans- and alpha-isomers 5t and 5.
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Relative HOMO-LUMO energy levels of the compounds 6t and 6«
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Fig. S 50 Molecular orbital energy level diagram for trans- (left) and alpha-isomer (right), compounds 6t and 6«
respectively. calculated with Gaussian16. Band gap (eV) for HOMO-LUMO transition is also reported. Select image of
HOMO-1, HOMO, LUMO and LUMO+1 are included to highlight the inversion of the frontier orbital HOMO and HOMO-1
energy level in the two isomers

Orbitals 6t (trans) E (eV) 6a(alpha) E (eV)

LUMO+1 -2.44 -2.44
LUMO -2.55 -2.50
HOMO -5.10 -5.11

HOMO-1 -5.14 -5.20

Table S 7 Absolute energy (eV) for the first four frontier orbitals of the trans- and alpha-isomers 6t and 6«
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