Facile hydrothermal synthesis of VO₂ nanosheets as robust catalysts

for liquid-phase selective oxidation of benzyl alcohol under

atmospheric O₂

Rui-Ming Wang, Si-Yao Yang, Fei Wang, Jie Xu^{*}, Bing Xue^{**}

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Gehu Middle Road 21,

Changzhou, Jiangsu 213164, PR China

Fig. S1 FT-IR spectra of V₂O₅, VO₂-140-1, VO₂-140-3, VO₂-140-5, and VO₂-140-8

materials.

^{*} Corresponding author. E-mail: <u>shine6832@163.com</u> (J. Xu) ORCID: 0000-0002-2413-8405 ** Corresponding author. E-mail: <u>xuebing@cczu.edu.cn</u> (B. Xue) ORCID: 0000-0001-6740-4665

Fig. S2 XPS survey of V2O5, VO2-100-5, VO2-120-5, VO2-140-5, VO2-180-5, VO2-

140-1, VO₂-140-3, and VO₂-140-8.

Fig. S3 V 2p spectrum of V₂O₅.

Fig. S4 Influence of reaction time on the catalytic performance of VO₂-140-5. Reaction conditions: 1 mL of BZA, 4 mL of toluene, $W_{\text{catal.}} = 40$ mg, and T = 95 °C.

Fig. S5 XRD patterns of the fresh and spent VO₂-140-5.

Fig. S6 SEM images of fresh (a&b) and recycled VO₂-140-5 (c&d) catalysts. The

figures a and c were the magnified images of figures b and d.

Fig. S7 FT-IR spectra of the fresh and spent VO₂-140-5.

Fig. S8 TG curves (N2 atmosphere) of the fresh and spent VO2-140-5 catalysts

Fig. S9 XPS survey of the fresh and spent VO₂-140-5.

Fig. S10 V 2p spectra of the fresh and spent VO₂-140-5.

Material	Он (%) ^а	Ov (%)	OL (%)
VO ₂ -140-1	7.8	20.3	71.9
VO ₂ -140-3	7.7	25.7	66.6
VO ₂ -140-5	7.0	28.5	64.5
VO ₂ -140-8	7.6	26.6	66.8

Table S1 Molar percentages of various O species.

 a The O_{H} , O_{V} , and O_{L} indicate hydroxyl oxygen in V–OH, oxygen vacancy, and lattice oxygen, respectively.

Table S2 Catalytic performance of VO₂-140-5 with various volumes of BZA^a.

$V_{\rm BZA}~({\rm mL})$	$V_{\text{toluene}}(\text{mL})$	Conv. (%)	Sel. (%)
1	4	91.6	>99.9
2	3	63.4	>99.9
3	2	20.3	>99.9
4	1	9.6	>99.9
5	_	7.5	>99.9

^a Reaction conditions: $W_{\text{catal.}} = 40 \text{ mg}, T = 95 \text{ }^{\circ}\text{C}$, and t = 6 h