Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

| 1        |     | Electronic Supporting Information                                                                                                                 |
|----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3   | S   | mall Amine-Functionalized Diesel Soot-Derived Onion-like Nanocarbon                                                                               |
| 4        |     | for Selective Sensing of Glutamic Acid and Imaging Application                                                                                    |
| 5        | K   | iran Gupta <sup>,a</sup> Nandini Tiwari, <sup>b</sup> Prashant Dubey, <sup>c</sup> Ranju Yadav, <sup>a</sup> Ruchi Aggarwal, <sup>b*</sup> Chumki |
| 6        |     | Dalal, <sup>d*</sup> Sumit Kumar Sonkar <sup>b*</sup>                                                                                             |
| 7        |     | <sup>a</sup> Department of Science, Oriental University, Indore, Madhya Pradesh-453555, India                                                     |
| 8        |     | <sup>b</sup> Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur-                                                  |
| 9        |     | 302017, Rajasthan, India                                                                                                                          |
| 10       |     | °Centre of Material Sciences, Institute of Interdisciplinary Studies (IIDS), University of                                                        |
| 11       |     | Allahabad, Prayagraj, 211002 Uttar Pradesh, India                                                                                                 |
| 12       |     | <sup>d</sup> Department of Applied Sciences, National Institute of Delhi, Delhi-110036, India                                                     |
| 13       |     | *To whom correspondence should be addressed: sksonkar.chy@mnit.ac.in,                                                                             |
| 14       |     | chumkidalal@nitdelhi.ac.in, 2019rcy9020@mnit.ac.in                                                                                                |
| 15       | Tal | ble of contents of supporting information                                                                                                         |
| 16<br>17 | 1.  | pH and ionic stability of f-en-ONC                                                                                                                |
| 18       | 2.  | Interference Study                                                                                                                                |
| 19       | 3.  | FT-IR                                                                                                                                             |
| 20       | 4.  | Cytotoxicity Study                                                                                                                                |
| 21       |     | pH, stabilityand ionic stability of f-en-ONC:                                                                                                     |
| 22       |     | The pH-related studies by changing the pH from 3 to 11 have shown the fluorescence                                                                |
| 23       |     | intensity first increased and then decreased with the change in pH while moving from                                                              |
| 24       |     | acidic to basic conditions. The maximum optimal fluorescence intensity of f-en-ONC has                                                            |
| 25       |     | appeared at pH 9 (Figure S1 (a)). The structure of f-en-ONC is relatively complicated,                                                            |
| 26       |     | mostly with graphite carbon or amorphous carbon as the main skeleton. The surface is                                                              |
| 27       |     | rich in carboxyl, hydroxyl, amide, and amine functional groups that may undergo                                                                   |
| 28       |     | protonation and deprotonation of basic and acidic groups in the ground or excited states,                                                         |
| 29       |     | which could change the property and the rate of transition processes and finally affect the                                                       |
| 30       |     | emissive properties of f-en-ONC. Additionally, the f-en-ONC shows good colloidal                                                                  |
| 31       |     | stability in the presence of Na <sub>2</sub> SO <sub>4</sub> and KCl, as shown in Figure S1 (b and c), and didn't                                 |
| 32       |     | observe any precipitation even at high concentrations of the above-mentioned salts.                                                               |
|          |     |                                                                                                                                                   |



34 Figure S1:(a) Effect of different pH on fluorescence intensity of f-en-ONC; Fluorescence

35 stability of f-en-ONC in the presence of different concentration of (b) Na<sub>2</sub>SO<sub>4</sub> and (c) KCl

36 Selective sensing of GLA:

37 The bar graph was plotted for biomolecules and f-en-ONC-biomolecules and the change in

38  $I/I_0$  was observed for interference study as the emission of f-en-ONC quenches for GLA even

39 in the presence of other interfering biomolecules as shown by Figure S2.<sup>1-3</sup>



40

41 Figure S2: Bar plot for selective sensing of GLA by f-en-ONC at an excitation wavelength

42 of 350 nm.

## 43 Interaction between f-en-ONC and f-en-ONC-GLA by FTIR:

Further, the interaction of f-en-ONC with GLA was evidenced by FTIR spectra shown in Figure S3. The comparison spectra of f-en-ONC in the absence and presence of GLA are plotted. In the f-en-ONC-GLA, broadening was observed in the region of 2400- 3600 cm<sup>-1</sup> corresponding to the –OH and -NH<sub>2</sub> group, which was possibly due to the interaction of several -OH and –NH<sub>2</sub> groups of f-en-ONC with GLA. The peak located at ~1626 cm<sup>-1</sup> in fen-ONC-GLA, which corresponds to the C=O stretching of the amide group, appearing at a

- 50 lower wavenumber w.r.t f-en-ONC (1633 cm<sup>-1</sup>), probably due to the interaction of GLA with
- 51 the amide group present in f-en-ONC.  $^{4,5}$



- Figure S3: Comparative FTIR spectra of f-en-ONC and f-en-ONC-GLA.
- 54

## 55 Cytotoxicity Assay of f-en-ONC

A cytotoxicity assay carried out for f-en-ONC against HeLa cells was evaluated as shown in **Figure S4**. The effect of different dosages of f-en-ONC on thegrowth of HeLa cellscan be observed via MTT assay method. The cytotoxicity examinationinvolved the treatment of HeLa cell culture with different concentrations(0.2 mg mL<sup>-1</sup>, 0.4 mg mL<sup>-1</sup>, 0.6 mg mL<sup>-1</sup>, 0.8 mg mL<sup>-1</sup>and 1.0 mg mL<sup>-1</sup>includingthe control sample (0.0 mg mL<sup>-1</sup>)) of f-en-ONC.Results show that the f-en-ONC is non-toxic up to 1.0 mg/mL, whereas 0.6 mg/mL was used for imaging studies.



63 64

Figure S4: Percent cell viability vs concentration of f-en-ONC plot for the cytotoxicityanalysis by MTT assay.

67 **References:** 

R. AbhijnaKrishna, S.-P. Wu and S. Velmathi, *Microchemical Journal*, 2024, 205,
111369.

70 (2) Y. Zhang, J. Jiang, M. Li, P. Gao, Y. Zhou, G. Zhang, S. Shuang and C. Dong,
71 *Talanta*, 2016, 161, 520-527.

- 72 (3) G. A. Tığ, Journal of Electroanalytical Chemistry, 2017, 807, 19-28
- 73 (4) Jiang, S.; Kong, X.; Wang, C.; Zang, X.; Su, M.; Zheng, H.; Zhang, B.; Li, G.; Xie,
- 74 H.; Yang, X. The Journal of Physical Chemistry A, 2019, 123, 10109-10115.
- 75 (5) Martinez-Felipe, A.; Cook, A. G.; Abberley, J. P.; Walker, R.; Storey, J. M.; Imrie, C.
- 76 T. *RSC Advances*, 2016, **6**, 108164-108179.