Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Information for

Structure and properties of heterobimetallic Au…Ag and Au…Cu interlocking thiolate [2]catenanes: a theoretical comparison study with homometallic Au…Au interlocking gold(I) thiolate [2]catenanes

Yang Liu, ^a Shui-xing Wu, ^b Qing-qing Pan, ^a Feng-wei Gao, ^a Ying-chen Duan, ^{*a} Yu-he Kan ^{*c} and Zhong-min Su ^{*ad}

^a School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130022, China. E-mail: <u>duanyc122@nenu.edu.cn</u>

^b Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, School of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, China.

^c Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China. E-mail: <u>kyh@hytc.edu.cn</u>

^d State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China. E-mail: <u>zmsu@nenu.edu.cn</u>

Table of Contents

Fig. S1 Comparation of S ₀ geometry optimization for Au10-Au12 by ADF program (red) and Gaussian program (black)4
Fig. S2 Results of energy decomposition analysis for Au10-Au12 calculated by the DFT/B3LYP and DFT/BP86 method.
Table S1 Results of energy decomposition analysis for Au10-Au12 calculated by the DFT/BP86 method and for all complexes by the DFT/B3LYP method (kcal/mol)5
Fig. S3 Comparison for UV-Vis spectrums of Au10 simulated in ADF program (red) by TD-DFT/B3LYP method and in Gaussian program (blue) by TD-DFT/TPSS method
Fig. S4 (a-c) Results of IGMH analysis of Au10-Au12 under B3LYP functional; (d-e) The
results of IGMH analysis of Au10-Au12 under BP86 functional. (color code:
yellow (Au), pink (S), green (C), white (H), isoval.=0.009)6
Fig S5 Optimized Au…Ag interlocking [2]catenanes. Color code: yellow (Au), blue (Ag), red (S), gray (C). Hydrogen atoms are omitted for clarity7
Fig S6 Optimized Au…Cu interlocking [2]catenanes. (Color code: yellow (Au), orange
(Cu), red (S), gray (C). Hydrogen atoms are omitted for clarity.)8
Table S2 Geometric parameters of Au···Ag interlocking [2]catenanes
Table S3 Geometric parameters of Au···Cu interlocking [2]catenanes11
Fig S7 Comparison for the average geometric parameters of Au···Ag interlocking [2]catenanes: (a)Au-S and Ag-S bond length (Å); (b)Au···Ag contacts (Å) involving the Au atom at the center and Au···Ag contacts (Å) involving the Ag atom at the center; (c)Au-S-Au and S-Au-S bond angle (°); (d)Ag-S-Ag and S-Ag-S bond angle (°)
Fig S8 Comparison of the average geometric parameters of Au…Cu interlocking [2]catenanes: (a) Au-S and Cu-S bond length (Å); (b) Au…Cu contacts (Å) involving the Au atom at the center and Au…Cu contacts (Å) involving the Cu atom at the center (a) Au S Au and S Au S hand angle (%); (d) Cu S Cu and S Cu
s hand angle (°)
Table S4 Calculated stabilization energies (kcal/mol) of (MeSAu) and (MeSAg) units in AuAg interlocking [2]catenanes
Table S5 Calculated stabilization energies (kcal/mol) of (MeSAu) and (MeSCu) units in
Au…Cu interlocking [2]catenanes
Fig S9 Calculated frontier molecular orbitals of Au. Au interlocking [2]catenanes at their
S ₀ geometries (color code: yellow (Au), red (S), gray (C), isoval. =0.020)
calculated by TD-DFT/TPSS method. (color code: vellow (Au), pink (S), green
(C), white (H), isoval.= 0.002)
Table S6 H index (Å), t index (Å), D index (Å), S _r index (a.u.), $\Delta \sigma$ index (Å) and E_c (eV)
Fig S11 The atoms contained in the four fragments in the molecule during IFCT analysis

(Partition color code: red (fragment 1), green (fragment 2), blue (fragment 3),
yellow (fragment 4)18
Table S7 Information of the orbitals contributing more than 1 % to the hole or electron in
the main transition process of the complex (2 means occupied orbital with two
electrons, 0 means unoccupied orbital with no electron)19
Table S8 The results of IFCT analysis of Au…Ag interlocking [2]catenanes23
Table S9 The results of IFCT analysis of Au…Cu interlocking [2]catenanes23
Table S10 The results of IFCT analysis of Au…Au interlocking [2]catenanes24
Table S11 The contribution percetnage of four fragments to holes and electrons in each
molecule

Fig. S1 Comparation of S_0 geometry optimization for Au10-Au12 by ADF program (red) and Gaussian program (black).

Fig. S2 Results of energy decomposition analysis for Au10-Au12 calculated by the DFT/B3LYP and DFT/BP86 method.

Complex	Functional	$\Delta E_{\rm Orb}$	ΔE_{Pauli}	$\Delta E_{\rm Elst}$	$\Delta E_{\rm Disp}$	ΔE_{Steric}	$\Delta E_{\rm Int}$
Au10		-82.18	299.21	-220.34	-107.55	78.88	-110.86
Au11	BP86	-61.63	198.91	-146.59	-113.74	52.32	-123.05
Au12		-52.66	145.35	-98.13	-132.90	47.22	-138.34
Au10		-53.92	235.19	-169.99	-94.24	65.20	-82.96
Au11		-48.19	202.88	-145.43	-104.64	57.45	-95.37
Au12		-40.95	150.99	-99.87	-122.87	51.12	-112.70
Au5Ag5		-45.98	197.70	-147.26	-83.85	50.44	-79.39
Au5Ag6		-45.67	184.59	-134.88	-92.73	49.71	-88.69
Au6Ag5	B3LYP	-40.79	170.25	-125.25	-92.04	45.00	-87.83
Au6Ag6	20211	-39.77	145.27	-102.68	-107.95	42.59	-105.13
Au5Cu5		-53.14	215.03	-158.98	-111.78	56.05	-108.87
Au5Cu6		-51.07	188.89	-134.40	-126.40	54.50	-122.98
Au6Cu5		-49.39	195.83	-141.26	-121.53	54.57	-116.34
Au6Cu6		-48.17	166.11	-115.88	-146.00	50.23	-143.93

Table S1 Results of energy decomposition analysis for Au10-Au12 calculated by the DFT/BP86 method and for all complexes by the DFT/B3LYP method (kcal/mol).

Fig. S3 Comparison for UV-Vis spectrums of **Au10** simulated in ADF program (red) by TD-DFT/B3LYP method and in Gaussian program (blue) by TD-DFT/TPSS method.

Fig. S4 (a-c) Results of IGMH analysis of Au10-Au12 under B3LYP functional; (d-e) The results of IGMH analysis of Au10-Au12 under BP86 functional. (color code: yellow (Au), pink (S), green (C), white (H), isoval.=0.009.)

Fig S5 Optimized Au…Ag interlocking [2]catenanes. (Color code: yellow (Au), blue (Ag), red (S), gray (C). Hydrogen atoms are omitted for clarity.)

Fig S6 Optimized Au…Cu interlocking [2]catenanes. (Color code: yellow (Au), orange (Cu), red (S), gray (C). Hydrogen atoms are omitted for clarity.)

Au5Ag5		Au5Ag6		Au6Ag5		Au6Ag6	
		Au	-S bond le	ngths (Å)			
Au(27)-S(26)	2.37	Au(7)-S(8)	2.37	Au(1)-S(2)	2.37	Au(2)-S(1)	2.37
Au(55)-S(26)	2.37	Au(9)-S(8)	2.37	Au(3)-S(2)	2.37	Au(2)-S(3)	2.37
Au(55)-S(32)	2.37	Au(9)-S(10)	2.38	Au(3)-S(4)	2.37	Au(65)-S(3)	2.36
Au(54)-S(32)	2.37	Au(11)-S(10)	2.38	Au(5)-S(4)	2.37	Au(65)-S(4)	2.37
Au(54)-S(31)	2.37	Au(11)-S(12)	2.38	Au(5)-S(6)	2.37	Au(5)-S(4)	2.36
Au(30)-S(31)	2.39	Au(13)-S(12)	2.38	Au(7)-S(6)	2.36	Au(5)-S(6)	2.37
Au(30)-S(29)	2.38	Au(13)-S(14)	2.37	Au(7)-S(8)	2.37	Au(64)-S(6)	2.39
Au(53)-S(29)	2.37	Au(15)-S(14)	2.37	Au(9)-S(8)	2.37	Au(64)-S(7)	2.36
Au(53)-S(28)	2.37	Au(15)-S(16)	2.37	Au(9)-S(10)	2.35	Au(8)-S(7)	2.38
Au(27)-S(28)	2.37	Au(7)-S(16)	2.38	Au(11)-S(10)	2.39	Au(8)-S(9)	2.36
				Au(11)-S(12)	2.39	Au(66)-S(9)	2.37
				Au(1)-S(12)	2.36	Au(66)-S(1)	2.36
		Ag	-s bond le	ngths (Å)			
Ag(56)-S(1)	2.43	Ag(61)-S(2)	2.42	Ag(62)-S(16)	2.42	Ag(67)-S(39)	2.40
Ag(56)-S(2)	2.43	Ag(62)-S(2)	2.42	Ag(63)-S(16)	2.42	Ag(68)-S(39)	2.41
Ag(60)-S(2)	2.43	Ag(62)-S(1)	2.42	Ag(63)-S(17)	2.42	Ag(68)-S(34)	2.39
Ag(60)-S(3)	2.42	Ag(63)-S(1)	2.42	Ag(66)-S(17)	2.43	Ag(69)-S(34)	2.43
Ag(59)-S(3)	2.42	Ag(63)-S(6)	2.40	Ag(66)-S(13)	2.43	Ag(69)-S(35)	2.42
Ag(59)-S(4)	2.41	Ag(64)-S(6)	2.48	Ag(64)-S(13)	2.42	Ag(72)-S(35)	2.41
Ag(58)-S(4)	2.45	Ag(64)-S(5)	2.48	Ag(64)-S(14)	2.44	Ag(72)-S(36)	2.43
Ag(58)-S(5)	2.47	Ag(65)-S(5)	2.39	Ag(65)-S(14)	2.43	Ag(71)-S(36)	2.41
Ag(57)-S(5)	2.41	Ag(65)-S(4)	2.42	Ag(65)-S(15)	2.43	Ag(71)-S(37)	2.42
Ag(57)-S(1)	2.41	Ag(66)-S(4)	2.42	Ag(62)-S(15)	2.43	Ag(70)-S(37)	2.41
		Ag(66)-S(3)	2.42			Ag(70)-S(38)	2.42
		Ag(61)-S(3)	2.42			Ag(67)-S(38)	2.42
		Au…Ag contacts ((Å) involving	g the Au atom at the cente	r		
Au(30)-Ag(56)	3.10	Au(15)-Ag(61)	3.21	Au(11)-Ag(62)	3.18	Au(64)-Ag(67)	3.78
Au(30)-Ag(57)	3.32	Au(15)-Ag(62)	3.46	Au(11)-Ag(65)	2.98	Au(64)-Ag(68)	3.99
Au(30)-Ag(58)	3.24	Au(15)-Ag(63)	3.71	Au(11)-Ag(64)	3.03	Au(64)-Ag(69)	3.70
Au(30)-Ag(59)	3.10	Au(15)-Ag(64)	3.29	Au(11)-Ag(66)	3.35	Au(64)-Ag(70)	3.35
Au(30)-Ag(60)	3.12	Au(15)-Ag(65)	3.68	Au(11)-Ag(63)	3.46	Au(64)-Ag(71)	3.07
		Au(15)-Ag(66)	3.60			Au(64)-Ag(72)	3.52
		Au…Ag contacts ((Å) involving	g the Ag atom at the cente	r		
Ag(58)-Au(30)	3.24	Ag(64)-Au(7)	3.25	Au(11)-Ag(63)	3.46	Au(2)-Ag(69)	3.33
Ag(58)-Au(54)	3.08	Ag(64)-Au(9)	3.02	Au(9)-Ag(63)	3.57	Au(65)-Ag(69)	3.66
Ag(58)-Au(55)	3.02	Ag(64)-Au(11)	2.98	Au(7)-Ag(63)	3.58	Au(5)-Ag(69)	3.74
Ag(58)-Au(27)	3.16	Ag(64)-Au(13)	3.11	Au(5)-Ag(63)	3.33	Au(64)-Ag(69)	3.70
Ag(58)-Au(53)	3.22	Au(15)-Ag(64)	3.29	Au(3)-Ag(63)	3.46	Au(8)-Ag(69)	3.45
				Au(1)-Ag(63)	3.73	Au(66)-Ag(69)	3.36
		A	u-S-Au bond	l angles (°)			
Au(27)-S(28)-Au(53)	103.64	Au(7)-S(8)-Au(9)	104.86	Au(1)-S(2)-Au(3)	95.12	Au(2)-S(3)-Au(65)	107.62
Au(53)-S(29)-Au(30)	101.07	Au(9)-S(10)-Au(11)	103.47	Au(3)-S(4)-Au(5)	98.56	Au(65)-S(4)-Au(5)	97.77
Au(30)-S(31)-Au(54)	100.10	Au(11)-S(12)-Au(13)	100.66	Au(5)-S(6)-Au(7)	97.90	Au(5)-S(6)-Au(64)	84.86

Table S2 Geometric parameters of Au…Ag interlocking [2]catenanes.

Au(54)-S(32)-Au(55)	103.98	Au(13)-S(14)-Au(15)	99.79	Au(7)-S(8)-Au(9)	93.88	Au(64)-S(7)-Au(8)	96.34
Au(55)-S262)-Au(27)	102.89	Au(15)-S(16)-Au(7)	99.59	Au(9)-S(10)-Au(11)	97.86	Au(8)-S(9)-Au(66)	104.70
				Au(11)-S(12)-Au(1)	92.95	Au(66)-S(1)-Au(2)	104.66
		S	-Au-S bone	d angles (°)			
S(28)-Au(53)-S(29)	175.74	S(8)-Au(9)-S(10)	176.88	S(2)-Au(3)-S(4)	178.33	S(1)-Au(2)-S(3)	170.59
S(29)-Au(30)-S(31)	176.81	S(10)-Au(11)-S(12)	178.45	S(4)-Au(5)-S(6)	178.45	S(3)-Au(65)-S(4)	174.01
S(31)-Au(54)-S(32)	176.40	S(12)-Au(13)-S(14)	175.74	S(6)-Au(7)-S(8)	179.07	S(4)-Au(5)-S(6)	175.14
S(32)-Au(55)-S(26)	176.39	S(14)-Au(15)-S(16)	170.86	S(8)-Au(9)-S(10)	175.58	S(6)-Au(64)-S(7)	165.16
S(26)-Au(27)-S(28)	176.21	S(16)-Au(7)-S(8)	176.20	S(10)-Au(11)-S(12)	169.98	S(7)-Au(8)-S(9)	171.18
				S(12)-Au(1)-S(2)	175.94	S(9)-Au(66)-S(1)	173.85
		Ag	g-S-Ag bor	nd angles (°)			
Ag(56)-S(1)-Ag(57)	101.93	Ag(61)-S(2)-Ag(62)	96.39	Ag(62)-S(15)-Ag(65)	101.58	Ag(67)-S(39)-Ag(68)	97.13
Ag(57)-S(5)-Ag(58)	98.15	Ag(62)-S(1)-Ag(63)	90.46	Ag(65)-S(14)-Ag(64)	102.70	Ag(68)-S(34)-Ag(69)	97.85
Ag(58)-S(4)-Ag(59)	100.03	Ag(63)-S(6)-Ag(64)	89.90	Ag(64)-S(13)-Ag(66)	105.90	Ag(69)-S(35)-Ag(72)	99.59
Ag(59)-S(3)-Ag(60)	100.86	Ag(64)-S(5)-Ag(65)	93.97	Ag(66)-S(17)-Ag(63)	98.56	Ag(72)-S(36)-Ag(71)	103.28
Ag(56)-S(2)-Ag(56)	102.65	Ag(65)-S(5)-Ag(66)	87.67	Ag(63)-S(16)-Ag(62)	98.38	Ag(71)-S(37)-Ag(70)	100.30
		Ag(66)-S(3)-Ag(61)	95.21			Ag(70)-S(38)-Ag(67)	90.19
		S	-Ag-S bond	d angles (°)			
S(1)-Ag(56)-S(2)	174.15	S(1)-Ag(62)-S(2)	177.14	S(13)-Ag(64)-S(14)	176.96	S(34)-Ag(69)-S(35)	163.10
S(2)-Ag(60)-S(3)	173.21	S(2)-Ag(61)-S(3)	175.72	S(14)-Ag(65)-S(15)	175.11	S(35)-Ag(72)-S(36)	176.32
S(3)-Ag(59)-S(4)	172.42	S(3)-Ag(66)-S(4)	178.53	S(15)-Ag(62)-S(16)	172.98	S(36)-Ag(71)-S(37)	169.53
S(4)-Ag(58)-S(5)	170.29	S(4)-Ag(65)-S(5)	172.03	S(16)-Ag(63)-S(17)	172.66	S(37)-Ag(70)-S(38)	176.96
S(5)-Ag(57)-S(1)	176.81	S(5)-Ag(64)-S(6)	168.27	S(17)-Ag(66)-S(13)	175.94	S(38)-Ag(67)-S(39)	171.60
		S(6)-Ag(63)-S(1)	174.90			S(39)-Ag(68)-S(34)	169.30
		Au-S	-S-Au dihe	edral angles (°)			
Au(27)-S(26)-S(32)-Au(54)	-13.60	Au(7)-S(8)-S(10)-Au(11)	5.41	Au(1)-S(2)-S(4)-Au(5)	-85.84	Au(2)-S(3)-S(4)-Au(5)	26.29
Au(55)-S(32)-S(31)-Au(30)	29.87	Au(9)-S(10)-S(12)-Au(13)	-34.07	Au(3)-S(4)-S(6)-Au(7)	83.05	Au(65)-S(4)-S(6)-Au(64)	-92.50
Au(54)-S(31)-S(29)-Au(53)	-33.14	Au(11)-S(12)-S(14)-Au(15)	56.65	Au(5)-S(6)-S(8)-Au(9)	-77.34	Au(5)-S(6)-S(7)-Au(8)	109.59
Au(30)-S(29)-S(28)-Au(27)	28.00	Au(13)-S(14)-S(15)-Au(16)	-51.65	Au(7)-S(8)-S(10)-Au(11)	88.96	Au(64)-S(7)-S(9)-Au(66)	-57.87
Au(53)-S(28)-S(26)-Au(55)	-10.38	Au(15)-S(16)-S(8)-Au(9)	23.66	Au(9)-S(10)-S(12)-Au(1)	-89.99	Au(8)-S(9)-S(1)-Au(2)	-10.72
				Au(11)-S(12)-S(2)-Au(3)	76.50	Au(66)-S(1)-S(3)-Au(65)	24.52
		Ag-	S-S-Ag dihe	edral angles (°)			
Ag(56)-S(2)-S(3)-Ag(59)	-1.46	Ag(61)-S(3)-S(4)-Ag(65)	-81.02	Ag(62)-S(15)-S(14)-Ag(64)	-35.48	Ag(67)-S(39)-S(34)-Ag(69)	11.39
Ag(60)-S(3)-S(4)-Ag(58)	39.70	Ag(66)-S(4)-S(5)-Ag(64)	91.97	Ag(65)-S(14)-S(13)-Ag(66)	6.01	Ag(68)-S(34)-S(35)-Ag(72)	50.47
Ag(59)-S(4)-S(5)-Ag(57)	-47.20	Ag(65)-S(5)-S(6)-Ag(63)	-96.56	Ag(64)-S(13)-S(17)-Ag(63)	23.91	Ag(69)-S(35)-S(36)-Ag(71)	-38.72
Ag(58)-S(5)-S(1)-Ag(56)	33.10	Ag(64)-S(6)-S(1)-Ag(62)	73.39	Ag(66)-S(17)-S(16)-Ag(62)	-53.44	Ag(72)-S(36)-S(37)-Ag(70)	-23.32
Ag(57)-S(1)-S(2)-Ag(60)	-24.66	Ag(63)-S(1)-S(2)-Ag(61)	-86.50	Ag(63)-S(16)-S(15)-Ag(65)	60.20	Ag(71)-S(37)-S(38)-Ag(67)	80.55
		Ag(62)-S(2)-S(3)-Ag(66)	88.90			Ag(70)-S(38)-S(39)-Ag(68)	-75.74

Au5Cu5		Au5Cu6		Au6Cu5		Au6Cu6	
			Au-S bond le	ength (Å)			
Au(27)-S(26)	2.37	Au(7)-S(8)	2.37	Au(1)-S(2)	2.37	Au(2)-S(1)	2.36
Au(27)-S(28)	2.37	Au(9)-S(8)	2.37	Au(3)-S(2)	2.37	Au(2)-S(3)	2.36
Au(53)-S(28)	2.37	Au(9)-S(10)	2.38	Au(3)-S(4)	2.37	Au(65)-S(3)	2.35
Au(53)-S(29)	2.36	Au(11)-S(10)	2.37	Au(5)-S(4)	2.37	Au(65)-S(4)	2.37
Au(30)-S(29)	2.39	Au(11)-S(12)	2.38	Au(5)-S(6)	2.37	Au(5)-S(4)	2.35
Au(30)-S(31)	2.40	Au(13)-S(12)	2.37	Au(7)-S(6)	2.37	Au(5)-S(6)	2.37
Au(54)-S(31)	2.36	Au(13)-S(14)	2.37	Au(7)-S(8)	2.38	Au(64)-S(6)	2.39
Au(54)-S(32)	2.37	Au(15)-S(14)	2.38	Au(9)-S(8)	2.37	Au(64)-S(7)	2.36
Au(55)-S(32)	2.37	Au(15)-S(16)	2.38	Au(9)-S(10)	2.34	Au(8)-S(7)	2.38
Au(55)-S(26)	2.37	Au(7)-S(16)	2.38	Au(11)-S(10)	2.41	Au(8)-S(9)	2.36
				Au(11)-S(12)	2.40	Au(66)-S(9)	2.36
				Au(1)-S(12)	2.35	Au(66)-S(1)	2.36
			Cu-S bond le	ength (Å)			
Cu(56)-S(3)	2.22	Cu(61)-S(4)	2.20	Cu(62)-S(17)	2.23	Cu(67)-S(34)	2.21
Cu(57)-S(3)	2.22	Cu(62)-S(4)	2.20	Cu(63)-S(17)	2.21	Cu(68)-S(34)	2.20
Cu(57)-S(2)	2.23	Cu(62)-S(3)	2.21	Cu(63)-S(16)	2.21	Cu(68)-S(39)	2.21
Cu(58)-S(2)	2.23	Cu(63)-S(3)	2.20	Cu(64)-S(16)	2.22	Cu(69)-S(39)	2.19
Cu(58)-S(1)	2.23	Cu(63)-S(2)	2.20	Cu(64)-S(15)	2.23	Cu(69)-S(38)	2.20
Cu(59)-S(1)	2.22	Cu(64)-S(2)	2.20	Cu(65)-S(15)	2.23	Cu(72)-S(38)	2.19
Cu(59)-S(5)	2.20	Cu(64)-S(1)	2.20	Cu(65)-S(14)	2.23	Cu(72)-S(37)	2.20
Cu(60)-S(5)	2.24	Cu(65)-S(1)	2.20	Cu(66)-S(14)	2.23	Cu(71)-S(37)	2.20
Cu(60)-S(4)	2.23	Cu(65)-S(6)	2.19	Cu(66)-S(13)	2.23	Cu(71)-S(36)	2.19
Cu(56)-S(4)	2.21	Cu(66)-S(6)	2.23	Cu(62)-S(13)	2.24	Cu(70)-S(36)	2.21
		Cu(66)-S(5)	2.23			Cu(70)-S(35)	2.20
		Cu(61)-S(5)	2.18			Cu(67)-S(35)	2.20
		Au…Cu contacts	(Å) involving	g the Au atom at the cente	er		
Au(30)-Cu(56)	2.94	Au(15)-Cu(61)	3.26	Au(11)-Cu(62)	3.03	Au(64)-Cu(67)	3.47
Au(30)-Cu(57)	2.92	Au(15)-Cu(62)	3.19	Au(11)-Cu(63)	3.26	Au(64)-Cu(68)	3.47
Au(30)-Cu(58)	2.89	Au(15)-Cu(63)	3.14	Au(11)-Cu(64)	3.01	Au(64)-Cu(69)	3.23
Au(30)-Cu(59)	2.98	Au(15)-Cu(64)	3.21	Au(11)-Cu(65)	2.87	Au(64)-Cu(70)	3.28
Au(30)-Cu(60)	3.16	Au(15)-Cu(65)	3.30	Au(11)-Cu(66)	2.89	Au(64)-Cu(71)	3.14
		Au(15)-Cu(66)	3.22			Au(64)-Cu(72)	3.26
		Au…Cu contacts	(Å) involvin	g the Cu atom at the center	er		
Cu(60)-Au(30)	3.16	Cu(66)-Au(7)	3.24	Au(11)-Cu(63)	3.26	Au(2)-Cu(67)	3.37
Cu(60)-Au(54)	3.10	Cu(66)-Au(9)	3.08	Au(9)-Cu(63)	3.44	Au(65)-Cu(67)	3.55
Cu(60)-Au(55)	3.03	Cu(66)-Au(11)	3.00	Au(7)-Cu(63)	3.43	Au(5)-Cu(67)	3.68
Cu(60)-Au(27)	3.17	Cu(66)-Au(13)	3.10	Au(5)-Cu(63)	3.32	Au(64)-Cu(67)	3.47
Cu(60)-Au(53)	3.20	Cu(66)-Au(15)	3.22	Au(3)-Cu(63)	3.42	Au(8)-Cu(67)	3.37
				Au(1)-Cu(63)	3.56	Au(66)-Cu(67)	3.42
		Α	u-S-Au bon	d angle (°)			
Au(27)-S(28)-Au(53)	103.54	Au(7)-S(8)-Au(9)	104.94	Au(1)-S(2)-Au(3)	90.59	Au(2)-S(3)-Au(65)	105.67
Au(53)-S(29)-Au(30)	99.84	Au(9)-S(10)-Au(11)	103.69	Au(3)-S(4)-Au(5)	92.77	Au(65)-S(4)-Au(5)	96.75
Au(30)-S(31)-Au(54)	98.19	Au(11)-S(12)-Au(13)	101.12	Au(5)-S(6)-Au(7)	92.96	Au(5)-S(6)-Au(64)	83.63

Table S3 Geometric parameters of Au…Cu interlocking [2]catenanes.

	Au(54)-S(32)-Au(55)	104.17	Au(13)-S(14)-Au(15)	99.44	Au(7)-S(8)-Au(9)	89.46	Au(64)-S(7)-Au(8)	93.12
	Au(55)-S262)-Au(27)	103.09	Au(15)-S(16)-Au(7)	98.69	Au(9)-S(10)-Au(11)	94.35	Au(8)-S(9)-Au(66)	102.17
					Au(11)-S(12)-Au(1)	90.93	Au(66)-S(1)-Au(2)	102.29
			S	S-Au-S bor	nd angle (°)			
	S(28)-Au(53)-S(29)	176.09	S(8)-Au(9)-S(10)	174.26	S(2)-Au(3)-S(4)	179.58	S(1)-Au(2)-S(3)	170.44
	S(29)-Au(30)-S(31)	174.54	S(10)-Au(11)-S(12)	177.10	S(4)-Au(5)-S(6)	178.75	S(3)-Au(65)-S(4)	167.87
	S(31)-Au(54)-S(32)	176.62	S(12)-Au(13)-S(14)	174.35	S(6)-Au(7)-S(8)	178.99	S(4)-Au(5)-S(6)	176.87
	S(32)-Au(55)-S(26)	176.12	S(14)-Au(15)-S(16)	173.40	S(8)-Au(9)-S(10)	176.05	S(6)-Au(64)-S(7)	170.43
	S(26)-Au(27)-S(28)	175.37	S(16)-Au(7)-S(8)	177.57	S(10)-Au(11)-S(12)	169.93	S(7)-Au(8)-S(9)	168.24
					S(12)-Au(1)-S(2)	175.66	S(9)-Au(66)-S(1)	171.24
			С	u-S-Cu bo	nd angle (°)			
	Cu(56)-S(3)-Cu(57)	104.24	Cu(61)-S(4)-Cu(62)	92.00	Cu(62)-S(13)-Cu(66)	108.58	Cu(67)-S(34)-Cu(68)	79.85
	Cu(57)-S(2)-Cu(58)	104.79	Cu(62)-S(3)-Cu(63)	97.11	Cu(66)-S(14)-Cu(67)	104.86	Cu(68)-S(39)-Cu(69)	106.52
	Cu(58)-S(1)-Cu(59)	105.94	Cu(63)-S(2)-Cu(64)	94.05	Cu(65)-S(15)-Cu(64)	104.99	Cu(69)-S(38)-Cu(72)	97.85
	Cu(59)-S(5)-Cu(60)	102.22	Cu(64)-S(1)-Cu(65)	91.03	Cu(64)-S(16)-Cu(63)	103.93	Cu(72)-S(37)-Cu(71)	101.20
	Cu(56)-S(4)-Cu(56)	102.39	Cu(65)-S(6)-Cu(66)	93.86	Cu(63)-S(17)-Cu(62)	104.34	Cu(71)-S(36)-Cu(70)	106.68
			Cu(66)-S(5)-Cu(61)	96.11			Cu(70)-S(38)-Cu(67)	104.40
			S	S-Cu-S bor	nd angle (°)			
	S(3)-Cu(56)-S(4)	169.96	S(3)-Cu(62)-S(4)	173.80	S(13)-Cu(66)-S(14)	174.71	S(34)-Cu(67)-S(35)	160.78
	S(4)-Cu(60)-S(5)	168.22	S(4)-Cu(61)-S(5)	176.62	S(14)-Cu(65)-S(15)	178.54	S(35)-Cu(70)-S(36)	172.68
	S(5)-Cu(59)-S(1)	173.99	S(5)-Cu(66)-S(6)	167.00	S(15)-Cu(64)-S(16)	173.79	S(36)-Cu(71)-S(37)	169.25
	S(1)-Cu(58)-S(2)	178.82	S(6)-Cu(65)-S(1)	172.09	S(16)-Cu(63)-S(17)	167.21	S(37)-Cu(72)-S(38)	170.55
	S(2)-Cu(57)-S(3)	172.10	S(1)-Cu(64)-S(2)	175.83	S(17)-Cu(62)-S(13)	175.06	S(38)-Cu(69)-S(39)	162.60
_			S(2)-Cu(63)-S(3)	176.94			S(39)-Cu(68)-S(34)	157.63
			Au-	S-S-Au dih	edral angles (°)			
	Au(27)-S(26)-S(32)-Au(54)	-16.59	Au(7)-S(8)-S(10)-Au(11)	1.55	Au(1)-S(2)-S(4)-Au(5)	-90.06	Au(2)-S(3)-S(4)-Au(5)	7.50
	Au(55)-S(32)-S(31)-Au(30)	32.20	Au(9)-S(10)-S(12)-Au(13)	-34.67	Au(3)-S(4)-S(6)-Au(7)	91.41	Au(65)-S(4)-S(6)-Au(64)	-75.09
	Au(54)-S(31)-S(29)-Au(53)	-36.54	Au(11)-S(12)-S(14)-Au(15)	56.57	Au(5)-S(6)-S(8)-Au(9)	-85.15	Au(5)-S(6)-S(7)-Au(8)	108.07
	Au(30)-S(29)-S(28)-Au(27)	28.89	Au(13)-S(14)-S(16)-Au(7)	-52.74	Au(7)-S(8)-S(10)-Au(11)	87.37	Au(64)-S(7)-S(9)-Au(66)	-59.17
	Au(53)-S(28)-S(26)-Au(55)	-8.39	Au(15)-S(16)-S(8)-Au(9)	28.56	Au(9)-S(10)-S(12)-Au(1)	-86.89	Au(8)-S(9)-S(1)-Au(2)	-13.13
_					Au(11)-S(12)-S(2)-Au(3)	76.52	Au(66)-S(1)-S(3)-Au(65)	34.64
			Cu-	S-S-Cu dih	edral angles (°)			
	Cu(56)-S(4)-S(5)-Cu(59)	-44.72	Cu(61)-S(4)-S(3)-Cu(63)	-73.88	Cu(62)-S(17)-S(16)-Cu(64)	-46.34	Cu(67)-S(34)-S(39)-Cu(69)	-17.21
	Cu(60)-S(5)-S(1)-Cu(58)	24.02	Cu(62)-S(3)-S(2)-Cu(64)	79.63	Cu(63)-S(16)-S(15)-Cu(65)	52.66	Cu(68)-S(39)-S(38)-Cu(72)	-41.85
	Cu(59)-S(1)-S(2)-Cu(57)	-10.49	Cu(63)-S(2)-S(1)-Cu(65)	-83.06	Cu(64)-S(15)-S(14)-Cu(66)	-30.86	Cu(69)-S(38)-S(37)-Cu(71)	49.14
	Cu(58)-S(2)-S(3)-Cu(56)	-9.88	Cu(64)-S(1)-S(5)-Cu(66)	73.54	Cu(65)-S(14)-S(13)-Cu(62)	7.11	Cu(72)-S(37)-S(36)-Cu(70)	-22.41
	Cu(57)-S(3)-S(4)-Cu(60)	44.25	Cu(65)-S(6)-S(5)-Cu(61)	-80.81	Cu(66)-S(13)-S(17)-Cu(63)	20.08	Cu(71)-S(36)-S(35)-Cu(67)	-33.68
			Cu(62)-S(5)-S(4)-Cu(62)	81.60			Cu(70)-S(35)-S(34)-Cu(68)	62.49

Fig S7 Comparison for the average geometric parameters of Au…Ag interlocking [2]catenanes: (a)Au-S and Ag-S bond length (Å); (b)Au…Ag contacts (Å) involving the Au atom at the center and Au…Ag contacts (Å) involving the Ag atom at the center; (c)Au-S-Au and S-Au-S bond angle (°); (d)Ag-S-Ag and S-Ag-S bond angle (°).

Fig S8 Comparison of the average geometric parameters of Au…Cu interlocking [2]catenanes: (a) Au-S and Cu-S bond length (Å); (b) Au…Cu contacts (Å) involving the Au atom at the center and Au…Cu contacts (Å) involving the Cu atom at the center; (c) Au-S-Au and S-Au-S bond angle (°); (d)Cu-S-Cu and S-Cu-S bond angle (°).

	Au5Ag5	Au5Ag6	Au6Ag5	Au6Ag6
E(MeSAu) _{Stable}	-39.84	-39.92	-39.85	-39.16
$E(MeSAg)_{Stable}$	-35.88	-35.99	-36.08	-35.72

Table S4 Calculated stabilization energies (kcal/mol) of (MeSAu) and (MeSAg) units in Au…Ag interlocking [2]catenanes.

Table S5 Calculated stabilization energies (kcal/mol) of (MeSAu) and (MeSCu) units in Au…Cu interlocking [2]catenanes.

Fig S9 Calculated frontier molecular orbitals of Au···Au interlocking [2]catenanes at their S_0 geometries. (color code: yellow (Au), red (S), gray (C), isoval. =0.020.)

Fig S10 The holes (blue) and electrons (green) of Au \cdots Au interlocking [2]catenanes calculated by TD-DFT/TPSS method. (color code: yellow (Au), pink (S), green (C), white (H), isoval.= 0.002.)

		H^{a}	t ^b	\mathbf{D}^{c}	$\mathbf{S_r}^d$	$\Delta\sigma^e$	E_{c}^{f}
Au5Ag5	$S_0 \rightarrow S_1$	3.936	-0.722	1.058	0.55	0.901	3.55
	$S_0 \to S_{16}$	4.197	-1.370	1.112	0.72	0.377	3.35
Au5Ag6	$\mathbf{S}_0 \to \mathbf{S}_1$	3.700	0.297	2.764	0.52	1.010	3.40
	$S_0 \to S_{12}$	4.184	-0.606	2.068	0.62	1.427	3.19
Au6Ag5	$\mathbf{S}_0 \to \mathbf{S}_1$	4.164	1.534	4.276	0.41	1.250	2.76
	$S_0 \to S_{21}$	4.517	-1.019	1.088	0.60	1.507	3.09
Au6Ag6	$S_0 \rightarrow S_1$	3.576	1.784	4.165	0.45	0.535	3.05
	$S_0 \to S_{34}$	4.450	-1.859	0.956	0.68	0.795	3.17
Au5Cu5	$\mathbf{S}_0 \to \mathbf{S}_1$	3.752	0.850	3.447	0.43	1.027	3.30
	$S_0 \to S_{27}$	3.989	-1.244	1.545	0.64	0.918	3.44
Au5Cu6	$\mathbf{S}_0 \to \mathbf{S}_1$	3.889	-1.354	1.091	0.52	1.454	3.50
	$S_0 \rightarrow S_7$	4.048	-2.054	0.955	0.63	1.347	3.46
Au6Cu5	$\mathbf{S}_0 \to \mathbf{S}_1$	3.783	2.242	4.685	0.37	1.237	2.79
	$S_0 \rightarrow S_7$	3.951	0.327	2.861	0.53	1.417	3.19
Au6Cu6	$S_0 \rightarrow S_1$	3.357	-0.682	1.355	0.48	0.875	4.08
	$S_0 \rightarrow S_{36}$	4.097	-1.842	0.383	0.62	0.664	3.51
Au10	$S_0 \to S_1$	4.065	-1.401	1.067	0.60	1.230	3.50
	$S_0 \rightarrow S_7$	3.811	-1.451	0.675	0.72	0.588	3.74
Au11	$S_0 \to S_1$	3.846	0.574	3.181	0.55	0.945	3.21
	$S_0 \rightarrow S_6$	4.012	-1.887	0.694	0.59	1.146	3.50
Au12	$\mathbf{S}_0 \to \mathbf{S}_1$	4.065	-0.004	2.844	0.55	0.773	3.24
	$S_0 \rightarrow S_{96}$	4.555	-2.131	0.459	0.71	1.352	3.12

Table S6 H index (Å), t index (Å), D index (Å), S_r index (a.u.), $\Delta \sigma$ index (Å) and E_c (eV) obtained by hole-electron analysis of all complexes.

^{*a*} H index is the RMSD of the hole and electron distribution.

^{*b*} t index represents the separation degree between holes and electrons, t > 0 indicates that the holes and electrons are separated sufficient due to CT, and t < 0 indicates the opposite.

^c D index is the distance between centroid of hole and centroid of hole

 d S_r index is the integral of S_r function. It can be used to measure the overlap degree between holes and electrons with the range of [0,1], where 1 represents complete coincidence of holes and electrons, and 0 represents no overlap.

 $e \Delta \sigma$ index is the difference between RMSD of holes and electrons.

 ${}^{f}E_{c}$ is the coulomb attractive energy between electrons and holes, namely the exciton binding energy caused by the opposite electrical properties.

Fig S11 The atoms contained in the four fragments in the molecule during IFCT analysis (Partition color code: red (fragment 1), green (fragment 2), blue (fragment 3), yellow (fragment 4).

complexes	excitation process	molecular orbital	occupancy	hole	electron
Au10	$S_0 \rightarrow S_1$	220	2	98.94%	0.00%
		221	0	0.00%	96.72%
		222	0	0.00%	2.33%
	$S_0 \rightarrow S_7$	219	2	15.78%	0.00%
		220	2	82.06%	0.00%
		222	0	0.00%	13.99%
		223	0	0.00%	1.22%
		224	0	0.00%	1.10%
		225	0	0.00%	1.02%
		226	0	0.00%	71.74%
		227	0	0.00%	4.29%
		228	0	0.00%	4.92%
Au11	$S_0 \rightarrow S_1$	242	2	98.89%	0.00%
		243	0	0.00%	91.49%
		244	0	0.00%	6.79%
	$S_0 \rightarrow S_6$	241	2	1.10%	0.00%
		242	2	97.83%	0.00%
		244	0	0.00%	1.40%
		245	0	0.00%	1.53%
		247	0	0.00%	9.24%
		248	0	0.00%	1.20%
		249	0	0.00%	84.75%
Au12	$S_0 \rightarrow S_1$	263	2	1.66%	0.00%
		264	2	97.48%	0.00%
		265	0	0.00%	83.13%
		266	0	0.00%	15.72%
	$S_0 \rightarrow S_{96}$	248	2	3.77%	0.00%
		249	2	2.42%	0.00%
		251	2	1.33%	0.00%
		256	2	8.64%	0.00%
		257	2	1.70%	0.00%
		258	2	8.72%	0.00%
		259	2	4.13%	0.00%
		261	2	3.28%	0.00%
		262	2	50.47%	0.00%
		263	2	6.13%	0.00%
		264	2	5.22%	0.00%
		265	0	0.00%	3.48%
		266	0	0.00%	4.36%
		267	0	0.00%	1.15%
		269	0	0.00%	2.49%
		270	0	0.00%	8.74%

Table S7 Information of the orbitals contributing more than 1% to the hole or electron in the main transition process of the complex. ("2" means occupied orbital with two electrons, ("0" means unoccupied orbital with no electron.)

		271	0	0.00%	12.43%
		272	0	0.00%	1.14%
		273	Ő	0.00%	50.53%
		274	Ő	0.00%	3 14%
		275	0	0.00%	5 75%
		279	0	0.00%	4 29%
A 115 A 65	$S \rightarrow S$	210	2	1 17%	0.00%
Ausags	$S_0 \rightarrow S_1$	219	2	1.1770	0.00%
		220	2	98.2070	0.0070
	C . C	221	0	0.00%	96.4270
	$\mathbf{S}_0 \rightarrow \mathbf{S}_{16}$	213	2	1.8170	0.00%
		217	2	10.5/%	0.00%
		218	2	42.97%	0.00%
		219	2	20.62%	0.00%
		220	2	15.75%	0.00%
		221	0	0.00%	16.72%
		222	0	0.00%	43.77%
		224	0	0.00%	3.08%
		225	0	0.00%	1.95%
		226	0	0.00%	20.00%
		227	0	0.00%	7.96%
		228	0	0.00%	4.09%
u5Ag6	$S_0 \rightarrow S_1$	242	2	99.15%	0.00%
8	0	243	0	0.00%	97.23%
		245	0	0.00%	1.58%
	$S_0 \rightarrow S_{12}$	239	2	1.02%	0.00%
	20 212	240	2	22.89%	0.00%
		242	2	74 20%	0.00%
		243	0	0.00%	2 28%
		244	0	0.00%	21.26%
		244 249	0	0.00%	4 62%
		250	0	0.0070	57 64%
		250	0	0.0070	0.06%
u6 \ a5	C \C	231	0	0.0070	9.9070
luoAgo	$S_0 \rightarrow S_1$	242	2	98.8070	0.0076
	C . C	243	0	0.00%	97.3070
	$S_0 \rightarrow S_{21}$	238	2	1./5%	0.00%
		239	2	1.06%	0.00%
		240	2	9.80%	0.00%
		241	2	49.36%	0.00%
		242	2	37.24%	0.00%
		243	0	0.00%	2.32%
		245	0	0.00%	2.79%
		246	0	0.00%	3.82%
		247	0	0.00%	5.56%
		248	0	0.00%	47.23%
		250	0	0.00%	1.19%
		251	0	0.00%	36.11%
Au6Ag6	$S_0 \rightarrow S_1$	263	2	2.13%	0.00%
		264	2	96.03%	0.00%

		265	0	0.00%	97.39%
		266	0	0.00%	1.70%
	$S_0 \rightarrow S_{24}$	253	2	2.91%	0.00%
	0 54	254	2	2.34%	0.00%
		258	2	2.78%	0.00%
		259	2	3.54%	0.00%
		260	2	6.02%	0.00%
		261	2	2.02%	0.00%
		262	2	21.83%	0.00%
		263	2	53.08%	0.00%
		264	2	3.02%	0.00%
		265	$\frac{2}{0}$	0.00%	6 36%
		265	0	0.00%	7.81%
		200	0	0.00%	5 8/1%
		267	0	0.00%	3 61%
		20)	0	0.00%	20.85%
		270	0	0.00%	29.8370 41.270/
		271	0	0.00%	41.2770
	C .C	272	0	0.00%	3.40%
AUSCUS	$S_0 \rightarrow S_1$	220	2	99.14%	0.00%
	0 0	221	0	0.00%	97.82%
	$S_0 \rightarrow S_{27}$	214	2	2.68%	0.00%
		215	2	1.08%	0.00%
		216	2	23.17%	0.00%
		217	2	30.94%	0.00%
		218	2	1.94%	0.00%
		219	2	26.73%	0.00%
		220	2	12.23%	0.00%
		221	0	0.00%	2.57%
		222	0	0.00%	25.61%
		223	0	0.00%	3.02%
		224	0	0.00%	28.85%
		225	0	0.00%	3.49%
		226	0	0.00%	15.46%
		227	0	0.00%	7.93%
		228	0	0.00%	1.61%
		229	0	0.00%	8.93%
		232	0	0.00%	1.15%
u5Cu6	$S_0 \rightarrow S_1$	242	2	98.73%	0.00%
		243	0	0.00%	98.59%
	$S_0 \rightarrow S_7$	243 239	0 2	0.00% 2.06%	98.59% 0.00%
	$S_0 \rightarrow S_7$	243 239 240	0 2 2	0.00% 2.06% 4.95%	98.59% 0.00% 0.00%
	$S_0 \rightarrow S_7$	243 239 240 241	0 2 2 2	0.00% 2.06% 4.95% 3.34%	98.59% 0.00% 0.00% 0.00%
	$S_0 \rightarrow S_7$	243 239 240 241 242	0 2 2 2 2 2	0.00% 2.06% 4.95% 3.34% 86.45%	98.59% 0.00% 0.00% 0.00%
	$S_0 \rightarrow S_7$	243 239 240 241 242 243	0 2 2 2 2 2 0	0.00% 2.06% 4.95% 3.34% 86.45% 0.00%	98.59% 0.00% 0.00% 0.00% 3.93%
	$S_0 \rightarrow S_7$	243 239 240 241 242 243 244	0 2 2 2 2 0 0	0.00% 2.06% 4.95% 3.34% 86.45% 0.00% 0.00%	98.59% 0.00% 0.00% 0.00% 3.93% 7.65%
	$S_0 \rightarrow S_7$	243 239 240 241 242 243 244 245	0 2 2 2 2 0 0 0	0.00% 2.06% 4.95% 3.34% 86.45% 0.00% 0.00% 0.00%	98.59% 0.00% 0.00% 0.00% 3.93% 7.65% 2.98%
	$S_0 \rightarrow S_7$	243 239 240 241 242 243 244 245 246	0 2 2 2 2 0 0 0 0 0	0.00% 2.06% 4.95% 3.34% 86.45% 0.00% 0.00% 0.00% 0.00%	98.59% 0.00% 0.00% 0.00% 3.93% 7.65% 2.98% 9.06%

		250	0	0.00%	2.82%
Au6Cu5	$S_0 \rightarrow S_1$	242	2	99.36%	0.00%
		243	0	0.00%	97.84%
		244	0	0.00%	1.07%
	$S_0 \rightarrow S_7$	238	2	1.73%	0.00%
		240	2	79.65%	0.00%
		242	2	17.18%	0.00%
		243	0	0.00%	80.63%
		248	0	0.00%	15.98%
Au6Cu6	$S_0 \rightarrow S_1$	262	2	2.28%	0.00%
		264	2	96.41%	0.00%
		265	0	0.00%	99.02%
	$S_0 \rightarrow S_{36}$	250	2	2.94%	0.00%
		253	2	1.70%	0.00%
		254	2	9.33%	0.00%
		255	2	2.66%	0.00%
		258	2	2.70%	0.00%
		259	2	10.48%	0.00%
		260	2	42.40%	0.00%
		261	2	1.24%	0.00%
		262	2	7.58%	0.00%
		263	2	3.04%	0.00%
		264	2	13.61%	0.00%
		265	0	0.00%	18.12%
		266	0	0.00%	9.96%
		267	0	0.00%	1.98%
		268	0	0.00%	44.69%
		269	0	0.00%	8.56%
		270	0	0.00%	1.75%
		271	0	0.00%	6.65%
		272	0	0.00%	4.72%
		273	0	0.00%	3.03%

comple	Au5	Ag5	Aus	5Ag6	Aut	6Ag5	Au6Ag6		
excitation	process	$S_0 \rightarrow S_1$	$S_0 \rightarrow S_{16}$	$S_0 \rightarrow S_1$	$S_0 \rightarrow S_{12}$	$S_0 \rightarrow S_1$	$S_0 \rightarrow S_{21}$	$S_0 \rightarrow S_1$	$S_0 \rightarrow S_{34}$
intrafragmen	t electron	0 090	0 044	0.095	0.060	0.088	0.056	0.066	0.039
redistribution of	f fragment 1	0.070	0.011	0.075	0.000	0.000	0.050	0.000	0.057
intrafragmen	t electron	0.038	0.018	0.019	0.009	0.017	0.012	0.024	0.021
redistribution of	0.050	0.010	0.017	0.007	0.017	0.012	0.024	0.021	
intrafragmen	t electron	0.043	0.077	0.063	0.097	0.029	0.075	0.004	0 094
redistribution of	0.045	0.077	0.005	0.077	0.02)	0.075	0.074	0.074	
intrafragmen	0 049	0.096	0.048	0.087	0.035	0.070	0.064	0 099	
redistribution of	f fragment 4	0.047	0.090	0.040	0.007	0.055	0.070	0.004	0.077
	Net 1 -> 2		0.027	0.029	0.009	0.018	0.020	0.033	0.021
transferred	Net 1 -> 3	-0.086	-0.059	-0.055	-0.008	-0.116	-0.076	-0.049	-0.049
electrons	electrons Net 1 -> 4		-0.080	-0.045	0.006	-0.105	-0.059	-0.023	-0.044
between	between Net 2 -> 3		-0.083	-0.051	-0.015	-0.067	-0.063	-0.074	-0.074
fragments	Net 2 -> 4	-0.093	-0.105	-0.043	-0.008	-0.062	-0.053	-0.048	-0.071
	Net 3 -> 4	0.016	-0.017	0.002	0.018	0.010	0.015	0.021	0.009

Table S8 The results of IFCT analysis of Au…Ag interlocking [2]catenanes.

Table S9 The results of IFCT analysis of Au…Cu interlocking [2]catenanes.

complex	kes	Aut	5Cu5	Au5	Cu6	Au6	Cu5	Au6Cu6			
excitation p	rocess	$S_0 \rightarrow S_1$	$S_0 \rightarrow S_{27}$	$S_0 \rightarrow S_1$	$S_0 \rightarrow S_7$	$S_0 \rightarrow S_1$	$S_0 \rightarrow S_7$	$S_0 \rightarrow S_1$	$S_0 \rightarrow S_{36}$		
intrafragment	electron	0 004	0 029	0.092	0.055	0.070	0.047	0.013	0.018		
redistribution of	fragment 1	0.094	0.029	0.092	0.055	0.070	0.047	0.015	0.018		
intrafragment	electron	0.042	0.013	0.022	0.017	0.024	0.012	0.005	0.010		
redistribution of	fragment 2	0.042	0.015	0.032	0.017	0.024	0.015	0.005	0.010		
intrafragment	electron	0.026	0.120	0.060	0.129	0.071	0.078	0 177	0.141		
redistribution of	0.020	0.129	0.000	0.136	0.071	0.078	0.177	0.141			
intrafragment	electron	0.017	0.040	0.010	0.047	0.026	0.024	0.066	0.059		
redistribution of	fragment 4	0.017	0.049	0.019	0.047	0.020	0.024	0.000	0.038		
	Net 1 -> 2	0.048	0.021	0.044	0.019	0.029	0.024	0.004	0.008		
transferred	Net 1 -> 3	-0.205	-0.148	-0.188	-0.092	-0.159	-0.210	-0.168	-0.163		
electrons	Net 1 -> 4	-0.061	-0.033	-0.035	0.011	-0.048	-0.055	-0.072	-0.048		
between Net 2 -> 3		-0.205	-0.181	-0.177	-0.087	-0.142	-0.184	-0.130	-0.168		
fragments	Net 2 -> 4	-0.069	-0.054	-0.044	-0.011	-0.050	-0.054	-0.057	-0.055		
	Net 3 -> 4	0.036	0.100	0.048	0.107	0.038	0.053	0.065	0.101		

		Au10		Au	11	Au12		
excitation proc	ess	$S_0 \rightarrow S_1$	$S_0 \rightarrow S_7$	$S_0 \rightarrow S_1$	$S_0 \rightarrow S_6$	$S_0 \rightarrow S_1$	$S_0 \rightarrow S_{96}$	
intrafragment ele	ectron	0.085	0 109	0.086	0.088	0.092	0.059	
redistribution of fra	gment 1	0.005	0.107	0.000	0.000	0.072	0.057	
intrafragment ele	ectron	0.037	0.050	0.011	0.011	0.036	0.051	
redistribution of fra	gment 2	0.037	0.050	0.011	0.011	0.050	0.001	
intrafragment ele	ectron	0.085	0.061	0 094	0.087	0 084	0 079	
redistribution of fra	gment 3	0.005	0.001	0.074	0.007	0.004	0.077	
intrafragment ele	ectron	0.038	0.024	0.035	0.033	0.032	0.055	
redistribution of fra	gment 4	0.058	0.024	0.055	0.055	0.052	0.055	
	Net 1 -> 2	0.062	0.084	0.029	0.027	0.065	0.029	
	Net 1 -> 3	-0.004	-0.046	-0.029	-0.034	-0.019	-0.036	
transferred electrons	Net 1 -> 4	0.056	0.019	0.033	0.030	0.057	-0.002	
between fragments	Net 2 -> 3	-0.064	-0.102	-0.043	-0.041	-0.077	-0.069	
	Net 2 -> 4	-0.004	-0.025	-0.006	-0.006	-0.002	-0.029	
	Net 3 -> 4	0.059	0.037	0.055	0.052	0.068	0.033	

Table S10 The results of IFCT analysis of Au…Au interlocking [2]catenanes.

		Au10		Au11		Au12		Au5Ag5		Au5Ag6		Au6Ag5		Au6Ag6		Au5Cu5		Au5Cu6		Au6Cu5		Au6Cu6	
		\mathbf{S}_1	S_7	S_1	S_6	S_1	S ₉₆	S_1	S_{16}	S_1	S_{12}	S_1	S ₂₁	S_1	S ₃₄	S_1	S_{27}	\mathbf{S}_1	S_7	S_1	S_7	S_1	S ₃₆
1	hole	35.38%	35.98%	31.87%	32.32%	35.93%	23.90%	25.57%	16.09%	28.31%	25.74%	22.68%	19.42%	23.76%	16.49%	21.57%	10.84%	22.73%	20.48%	19.29%	13.07%	4.74%	6.74%
	electron	23.97%	30.21%	26.88%	27.25%	25.60%	24.77%	35.07%	27.22%	33.56%	23.34%	38.68%	28.97%	27.62%	23.68%	43.41%	26.82%	40.63%	26.68%	36.06%	36.35%	28.36%	27.11%
2	hole	13.90%	14.18%	7.42%	7.29%	13.10%	17.10%	10.41%	6.56%	9.19%	8.13%	7.72%	6.00%	9.58%	8.33%	9.95%	4.48%	9.03%	8.26%	7.91%	4.15%	2.13%	3.86%
	electron	26.86%	35.36%	15.38%	14.61%	27.46%	29.77%	36.05%	28.10%	21.13%	10.84%	21.12%	19.15%	25.07%	24.95%	42.13%	30.00%	35.63%	20.02%	29.80%	30.28%	21.24%	26.95%
2	hole	36.11%	35.75%	39.27%	38.87%	38.32%	35.74%	33.66%	34.72%	32.54%	34.53%	34.93%	38.99%	38.62%	37.89%	49.88%	63.29%	52.64%	54.20%	51.36%	62.42%	63.99%	65.59%
3	electron	23.46%	17.20%	24.00%	22.34%	21.94%	22.01%	12.72%	22.20%	19.26%	28.15%	8.23%	19.16%	24.33%	24.72%	5.22%	20.44%	11.31%	25.51%	13.77%	12.56%	27.63%	21.45%
4	hole	14.62%	14.09%	15.04%	14.93%	12.66%	23.26%	30.36%	42.63%	27.81%	29.62%	33.40%	34.16%	28.05%	37.30%	18.60%	21.39%	15.60%	17.06%	20.22%	19.55%	29.13%	23.81%
4	electron	25.72%	17.23%	23.08%	21.95%	25.00%	23.45%	16.16%	22.47%	17.10%	29.29%	10.59%	20.63%	22.98%	26.66%	9.25%	22.73%	12.43%	27.80%	12.85%	12.41%	22.78%	24.49%

Table S11 The contribution percentage of four fragments to holes and electrons in each molecule.