Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Template-annealing-assisted fabrication of Au/TiO₂/Ni nanopetal arrays as

ultrasensitive and reproducible SERS substrates with super long-term stability

Qi Lin ^{a,‡}, Chunfang Zheng ^{a,‡}, Weicong Qian^a, Ning Yuan^a, Qun Fu^{a,*}, Yong Lei ^b

^aInstitute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China

^bFachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, 98693 Ilmenau, Germany

Fig. S1. SEM images of (a) H- and (b) S-Ni nanopillar arrays, and the corresponding (c) H- and (d) S-TiO₂/Ni nanopillar arrays.

Fig. S2. SERS spectra of 10⁻⁵ M R6G molecules on (a) H-Au/TiO₂/Ni and (b) S-Au/TiO₂/Ni nanopillar arrays with different TiO₂ thicknesses of 20, 30, 40, 50 and 60 nm. (c) Comparisons of SERS response among S-Au/TiO₂/Ni, S-TiO₂/Ni and the original S-Ni nanopillar arrays to R6G molecules.

EF calculation

To explain the improvement of SERS sensitivity after the deposition of TiO_2 and Au, enhancement factors (EFs) of Au/TiO₂/Ni compared to TiO_2 /Ni, and that of TiO_2 /Ni compared to Ni were roughly estimated (using the SERS intensities *I* and molecule concentrations *C* shown in Fig. S2c) using the following formulas:

$$EF_1 = (I_{\text{TiO2/Ni}} / I_{\text{Ni}}) \times (C_{\text{Ni}} / C_{\text{TiO2/Ni}})$$

 $EF_2 = (I_{Au/TiO2/Ni}/I_{TiO2/Ni}) \times (C_{TiO2/Ni}/C_{Au/TiO2/Ni})$

Tab. S1. Enhanced factors (EF_1, EF_2) calculated at main characteristic peaks.

Peak position (cm ⁻¹)	EF_{I}	EF ₂	I _{Ni}	I _{TiO2/Ni}	I _{Au/TiO2/Ni}
612	6.27	1.50×10 ⁴	968.565	6074.76	9102.55
773	6.07	1.45×10^{4}	920.564	5590.59	8120.65
1186	5.54	1.11×10^{4}	1662.63	9215.47	10219.9
1313	9.00	1.29×10 ⁴	888.915	7999.78	10298.4
1362	8.05	1.01×10^{4}	2287.13	18409.8	18654.1
1510	9.22	0.61×10 ⁴	2216.4	20428.6	12414.6
1650	6.88	1.02×10^{4}	1515.96	10421.8	10676.7

Fig. S3. Distributions of nanopillar diameter (D) of (a) H-TiO₂/Ni and (b) S-TiO₂/Ni nanoarrays at different

temperatures.

Fig. S4. SEM images of (a) unannealed and (b-e) annealed Au/TiO₂/Si nanoarrays at 500°C-650°C.

Fig. S5. (a) SERS spectra of 10⁻⁵ M R6G molecules on unannealed and annealed Au/TiO₂/Si nanostructure at different annealing temperatures. (b) Comparisons of the variation trend of SERS response to 10⁻⁵ M R6G molecules with temperature among H-Au/TiO₂/Ni, S-Au/TiO₂/Ni and Au/TiO₂/Si structures at 1510 cm⁻¹ peak.

Fig. S6. (a) Comparison of SEM images of S-Ni nanoarrays before and after 650°C annealing. (b) Comparison

of XRD patterns of S-Ni nanoarrays before and after 650°C annealing.

Tab. S2. Comparison of literature results on hybrid substrates of Au (Ag) and TiO₂ (ZnO) using R6G and CV as probe molecules.

Structure	Detection limit (mol/L)	Reference
Au@TiO ₂ NRAs	10 ⁻⁷ (R6G)	[1]
TiO ₂ /Au NWAs	10 ⁻⁹ (R6G)	[2]
Au NPs coated amorphous TiO2 nanotubes	10 ⁻⁶ (R6G)	[3]
Au/TiO ₂ spheres	10 ⁻⁶ (R6G)	[4]
Au/ZnO	10 ⁻⁹ (R6G)	[5]
Au-decorated ZnO nanorod array	10 ⁻⁹ (R6G)	[6]
Ag/TiO ₂	10 ⁻¹⁰ (CV)	[7]
Au Nanorods@TiO2 Nanocomposites	10 ⁻⁹ (CV)	[8]
Au/TiO _{2-x} /NiO (Ni)	10 ⁻¹³ (CV)	This work
	10 ⁻¹² (R6G)	This work

References

- Z. Xie, F. Zhao, S. Zou, F. Zhu, Z. Zhang and W. Wang, J. Alloy. Compd., 2021, 861, 157999.
 https://doi.org/10.1016/j.jallcom.2020.157999.
- [2] X. Zhao, W. Wang, Y. Liang, J. Fu, M. Zhu, H. Shi, S. Lei and C. Tao, *Sens. Actuators B Chem.*, 2019, 279, 313–319. https://doi.org/10.1016/j.snb.2018.10.010.
- [3] M. Steffi Antony and R. Shankar Hyam, *Mater. Sci. Eng. B*, 2023, **298**, 116885. https://doi.org/10.1016/j.mseb.2023.116885.
- [4] X. Li, H. Hu, D. Li, Z. Shen, Q. Xiong, S. Li and H.J. Fan, ACS Appl. Mater. Interfaces, 2012, 4, 2180–2185. https://doi.org/10.1021/am300189n.
- [5] C. Xiao, B. Xiao, Y. Wang, J. Zhang, S. Wang, P. Wang, T. Yang, R. Zhao, H. Yu, Z. Li and M. Zhang,

RSC Adv., 2015, 5, 17945–17952. https://doi.org/10.1039/C4RA15193C.

[6] W. Kim, S.H. Lee, S.H. Kim, J.-C. Lee, S.W. Moon, J.S. Yu and S. Choi, ACS Appl. Mater. Interfaces, 2017, 9, 5891–5899. https://doi.org/10.1021/acsami.6b16130.

[7] Z. Zhang, J. Yu, J. Yang, X. Lv and T. Wang, *Appl. Surf. Sci.*, 2015, 359, 853–859.
 https://doi.org/10.1016/j.apsusc.2015.10.197.

[8] H. Fu, N. Ding, D. Ma, Q. Xu, B. Lin, B. Qiu, Z. Lin and L. Guo, *Biosensors*, 2022, 13, 7. https://doi.org/10.3390/bios13010007.