Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Visible Light Driven, Persulfate-Mediated Dual C-H Sulfenylation of Imidazopyridines using Thiocyanate Salt

Pallavi Saha,^a Vijay Kumar,^a Deepak K Sharma^{*a}

^aDepartment of Pharmaceutical Engg. and Tech., IIT-Banaras Hindu University, Varanasi, UP, 221005, email id: <u>deepak.phe@itbhu.ac.in</u>

Table of Contents

1.	General Information	S2
2.	General Synthetic Procedure	.\$3-\$4
3.	Spectral Data	.S5-S10
4.	Gram Scale Synthesis Procedure	S11
5.	Control Experiment Procedure	S12-S13
6.	In vitro anti-oxidant activity	S14-S15
7.	¹ H and ¹³ C NMR Spectra	S16-S51

General information

All chemicals were purchased from Sigma-Aldrich, TCI Chemicals, SRL Chemicals, and Avra, and used as received. Molychem silica gel (60-120 mesh) was used for column chromatography, and thin-layer chromatography was performed on Merck pre-coated silica gel 60-F254 plates. All other chemicals and solvents were obtained from commercial sources and purified using standard methods. The ¹H NMR and ¹³C NMR spectra were recorded on Bruker Advance spectrometers. Data are represented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, dd = double doublet, t = triplet, q = quartet, dd= doublet of doublet, dt= doublet of triplet, td= triplet of doublet and m = multiplet), and coupling constants in hertz (Hz).

General procedure for the synthesis of 3-((1*H*-indol-3-yl)thio)-2-aryl imidazo[1,2-*a*]pyridines (3a-3k):

An oven-dried round bottom flask was charged with the corresponding 2-aryl imidazo[1,2*a*]pyridines (**1a-g**, 1 mmol), KSCN (2 equiv.), $K_2S_2O_8$ (2 equiv.) in 5 mL of ACN:H₂O in 1:1 ratio. The reaction mixture was stirred at room temperature for 8h under irradiation of blue LED light (24 W, 455 nm), at a distance of 2 cm away from light source, in open air. After 8 h of continuation of reaction, DBU (1 equiv.) was added to the same on-going reaction mixture, followed by addition of indole (**2a-2e**, 1 equiv.) to it. The entire reaction was continued up to 20 h. On completion of the reaction, next reaction mixture was extracted with ethyl acetate (15 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuum. The residue was purified by column chromatography on silica gel using a solvent system of ethyl acetate/*n*-hexane to afford the desired product.

General procedure for the synthesis of 3-((1*H*-pyrrolo[2,3-*b*]pyridin-3-yl)thio)-2-phenylimidazo[1,2-*a*]pyridine (4a):

An oven-dried round bottom flask was charged with the corresponding 2-phenyl imidazo[1,2-a]pyridine (1a, 1 mmol), KSCN (2 equiv.), K₂S₂O₈ (2 equiv.) in 5 ml of ACN:H₂O in 1:1 ratio. The reaction mixture was stirred at room temperature for 8 h under irradiation of blue LED light (24 W, 455 nm), at a distance of 2 cm away from light source, in open air. After 8h of continuation of reaction, DBU (1 equiv.) was added to the same on-going reaction mixture, followed by further addition of 7-aza indole (1 equiv.) to it. The entire reaction was continued up to 20 h. On completion of the reaction, next reaction mixture was extracted with ethyl acetate (15 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuum. The residue was purified by column chromatography on silica gel using a solvent system of ethyl acetate/*n*-hexane to afford the desired product.

General procedure for the synthesis of 2-((7-methyl-2-phenylimidazo[1,2-*a*]pyridin-3-yl)thio)benzo[*d*]thiazole (4b):

An oven-dried round bottom flask was charged with the corresponding 7-methyl 2-phenyl imidazo[1,2-*a*]pyridine (**1b**, 1 mmol), KSCN (2 equiv.), $K_2S_2O_8$ (2 equiv.) in 5 ml of ACN:H₂O in 1:1 ratio. The reaction mixture was stirred at room temperature for 8h under irradiation of blue LED light (24 W, 455 nm), at a distance of 2 cm away from light source, in open air. After 8h of continuation of reaction, DBU (1 equiv.) was added to the same on-going reaction mixture, followed by addition of benzothiazole (1 equiv.) to it. The entire reaction was continued up to 20h. On completion of the reaction, next reaction mixture was extracted with ethyl acetate (15 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuum. The residue was purified by column chromatography on silica gel using a solvent system of ethyl acetate/*n*-hexane to afford the desired product.

General procedure for the synthesis of bis(2-phenylimidazo[1,2-*a*]pyridin-3-yl)sulfane (4c):

An oven-dried round bottom flask was charged with the corresponding 2-phenyl imidazo[1,2-a]pyridine (1a, 1 mmol), KSCN (2 equiv.), K₂S₂O₈ (2 equiv.) in 5 mL of ACN:H₂O in 1:1 ratio. The reaction mixture was stirred at room temperature for 8h under irradiation of blue LED light

(24 W, 455 nm), at a distance of 2 cm away from light source, in open air. After 8 h of continuation of reaction, DBU (1 equiv.) was added to the same on-going reaction mixture, followed by further addition of 2-phenyl imidazo[1,2-*a*]pyridines (**1a**, 1 equiv.) to it. The entire reaction was continued up to 20 h. On completion of the reaction, next reaction mixture was extracted with ethyl acetate (15 mL \times 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuum. The residue was purified by column chromatography on silica gel using a solvent system of ethyl acetate/*n*-hexane to afford the desired product.

General procedure for the synthesis of 3-((1*H*-indol-3-yl)thio)-2-phenyl imidazo[1,5-*a*]pyridines (5a-c):

An oven-dried round bottom flask was charged with the corresponding 3-phenyl imidazo[1,5*a*]pyridines (1 mmol), KSCN (2 equiv.), $K_2S_2O_8$ (2 equiv.) in 5 mL of ACN:H₂O in 1:1 ratio. The reaction mixture was stirred at room temperature for 8 h under irradiation of blue LED light (24 W, 455 nm), at a distance of 2 cm away from light source, in open air. After 8 h of continuation of reaction, DBU (1 equiv.) was added to the same on-going reaction mixture, followed by addition of indole (**2a**, 1 equiv.) to it. The entire reaction was continued up to 20 h. On completion of the reaction, next reaction mixture was extracted with ethyl acetate (15 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuum. The residue was purified by column chromatography on silica gel using a solvent system of ethyl acetate/*n*-hexane to afford the desired product.

Spectral Data

2-Phenyl-3-((2-phenyl-1,8a-dihydroimidazo[1,2-a]pyridin-3-yl)disulfanyl)imidazo[1,2*a*]pyridine (1ab): ¹H NMR (CDCl₃,600 MHz) δ = 8.10 (d, *J* = 5.4 Hz, 2H), 7.63 (s, 4H), 7.36 (d, *J* = 5.4 Hz, 2H), 7.19 (t, *J* = 7.8 Hz, 2H), 7.13-7.09 (m, 6H), 6.74 (t, *J* = 6.6 Hz, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ =147.3, 131.9, 128.1, 127.9, 127.7, 127.0, 124.4, 117.6, 113.0.

3-((1*H***-indol-3-yl)thio)-2-phenylimidazo[1,2-***a***]pyridine (3a): ¹H NMR (CDCl₃,500 MHz) \delta= 8.63-8.60 (m, 3H), 8.39-8.37 (m, 2H), 7.62 (d,** *J* **= 9 Hz, 1H), 7.55 (t,** *J* **= 7.5 Hz, 2H), 7.48-7.45 (m, 1H), 7.37 (d,** *J* **= 8 Hz, 1H), 7.29-7.23 (m, 2H), 7.22 (d,** *J* **= 2.5 Hz, 1H), 7.16-7.13 (m, 1H), 7.03-7.00 (m, 1H), 6.89 (td,** *J* **= 7 Hz, 1Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) \delta = 149.4, 146.1, 136.0, 133.9, 129.0, 128.9, 128.4, 127.9, 127.2, 127.1, 125.1, 124.6, 122.8, 120.6, 119.3, 117.5, 112.5, 111.5, 110.4, 104.3.**

3-((1*H***-indol-3-yl)thio)-7-methyl-2-phenylimidazo[1,2-***a***]pyridine (3b): ¹H NMR (CDCl₃, 600 MHz) \delta= 8.38 (d,** *J* **= 7.2 Hz, 1H), 8.27-8.26 (m, 2H), 8.24 (s, 1H), 7.44 (t,** *J* **= 7.2 Hz, 2H), 7.35 (t,** *J* **= 7.2 Hz, 1H), 7.30 (s, 1H), 7.20-7.19 (m, 2H), 7.09 (d,** *J* **= 2.4 Hz, 1H), 7.07-7.05 (m, 1H), 6.94-6.92 (m, 1H), 6.62 (dd,** *J* **= 7.2 Hz, 1.8 Hz, 1H), 2.31 (s, 1H); ¹³C NMR (CDCl₃, 150 MHz) \delta= 146.5, 137.1, 37.0, 128.9, 128.3, 128.2, 127.9, 126.8, 123.7, 122.8, 120.6, 119.3, 116.0, 115.2, 111.4, 104.9, 21.3.**

3-((1*H***-indol-3-yl)thio)-7-chloro-2-phenylimidazo[1,2-***a***]pyridine (3c): ¹H NMR (CDCl₃, 500 MHz) \delta= 8.50 (dd,** *J* **= 7.5 Hz, 1Hz, 1H), 8.34-8.31 (m, 3H), 7.59 (dd,** *J* **= 2 Hz, 0.5 Hz, 1H), 7.55-7.51 (m, 2H), 7.47-7.44 (m, 1H), 7.32-7.27 (m, 2H), 7.20 (d,** *J* **= 2.5 Hz, 1H), 7.16-**

7.13 (m, 1H), 7.02-6.98 (m, 1H), 6.84 (dd, J = 7 Hz, 2 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) $\delta = 190.1$, 145.8, 136.0, 134.0, 132.5, 128.9, 128.8, 128.5, 127.8, 127.2, 124.9, 123.0, 120.8, 119.2, 116.4, 114.1, 111.5, 110.9, 104.0.

3-((1*H***-indol-3-yl)thio)-6-bromo-2-phenylimidazo[1,2-***a***]pyridine (3d): ¹H NMR (CDCl₃, 500 MHz) \delta= 8.76 (s, 1H), 8.54 (s, 1H), 8.36 (d,** *J* **= 8 Hz, 1H), 7.57-7.55 (m, 2H), 7.50 (d,** *J* **= 9.5 Hz, 2H), 7.31-7.49 (m, 4H), 7.16 (t,** *J* **= 7.5 Hz, 1H), 7.01 (t,** *J* **= 7.5 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) \delta= 150.0, 144.5, 136.1, 133.5, 129.3, 129.0, 128.9, 128.6, 128.5, 127.9, 127.6, 124.8, 123.0, 120.8, 119.3, 118.1, 111.5, 111.0, 107.4, 103.6.**

3-((1*H***-indol-3-yl)thio)-2-(4-chlorophenyl)imidazo[1,2-***a***]pyridine (3e): ¹H NMR (CDCl₃, 600 MHz) \delta= 7.03 (d,** *J* **= 7.2 Hz, 1H), 8.37 (s, 1H), 8.27 (d,** *J* **= 8.4 Hz, 2H), 7.52 (d,** *J* **= 9 Hz, 1H), 7.42 (d,** *J* **= 8.4 Hz, 2H), 7.28 (d,** *J* **= 8.4 Hz, 1H), 7.21-7.16 (m, 2H), 7.13 (d,** *J* **= 1.8 Hz, 1H), 7.07 (t,** *J* **= 7.2 Hz, 1H), 6.95 (t,** *J* **= 7.2 Hz, 1H), 6.81 (t,** *J* **= 6.6 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) \delta= 148.0, 146.1, 136.1, 134.3, 132.4, 130.1, 128.6, 127.8, 127.2, 126.2, 124.6, 123.0, 120.8, 119.2, 117.5, 112.8, 111.5, 110.5, 104.2.**

3-((1*H***-indol-3-yl)thio)-2-(3-bromophenyl)imidazo[1,2-***a***]pyridine (3f): ¹H NMR (DMSO***d***₆, 600 MHz) \delta= 11.49 (s, 1H), 8.91 (d,** *J* **= 7.8 Hz, 1H), 8.57 (t,** *J* **= 1.8 Hz, 1H), 8.45 (d,** *J* **= 9.6 Hz, 1H), 7.88 44 (t,** *J* **= 3 Hz, 1H), 7.70-7.68 (m, 1H), 7.65 (d,** *J* **= 10.5 Hz, 1H), 7.57 (d,** *J* **= 9 Hz, 1H), 7.41-7.38 (m, 1H), 7.34 (d,** *J* **= 9.26 Hz, 1H), 7.10 44 (td,** *J* **= 8.4 Hz, 1.2 Hz, 1H), 7.06-7.02 (m, 2H), 6.85-6.81 (m, 1H); ¹³C NMR (DMSO-***d***₆, 150 MHz) \delta= 146.1, 145.8, 136.7, 136.6, 131.1, 131.1, 130.9, 128.1, 127.1, 127.6, 125,6, 122.5, 122.2, 120.4, 120.3, 117.7, 114.2, 113.8, 112.7, 111.4, 100.7.**

3-((1*H***-indol-3-yl)thio)-2-(naphthalen-2-yl)imidazo[1,2-***a***]pyridine (3g): ¹H NMR (DMSO***d***₆, 600 MHz) \delta= 11.68-11.65 (m, 1H), 9.29-9.27 (m, 1H), 8.83 (s, 1H), 8.41 (d,** *J* **= 7.9 Hz, 1H), 8.24 (d,** *J* **= 9 Hz, 1H), 8.13 (d,** *J* **= 7.2 Hz, 1H), 8.10 (d,** *J* **= 7.8 Hz, 1H), 7.99-7.98 (m, 1H), 7.94 (t,** *J* **= 9 Hz, 1H), 7.89-7.87 (m, 1H), 7.70-7.66 (m, 2H), 7.53-7.50 (m, 1H), 7.32 (d,** *J* **= 7.8 Hz, 1H), 6.99 (t,** *J* **= 7.8 Hz, 1H), 6.86-6.85 (m, 1H), 6.66 (t,** *J* **= 7.2 Hz, 1H); ¹³C NMR (DMSO-***d***₆, 150 MHz) \delta= 136.7, 133.8, 133.1, 133.0, 129.4, 129.1, 128.3, 128.0, 127.6, 127.0, 126.3, 126.3, 122.5, 120.4, 118.2, 117.1, 114.3, 112.8, 98.9.**

3-((2-Methyl-1H-indol-3-yl)thio)-2-phenylimidazo[1,2-*a***]pyridine (3h): ¹H NMR (DMSO***d***₆, 600 MHz) \delta= 11.41 (s, 1H), 8.61 (d,** *J* **= 6.6 Hz, 1H), 8.32 (d,** *J* **= 7.8 Hz, 1H), 7.67 (d,** *J* **= 9 Hz, 1H), 7.52 (t,** *J* **= 7.2 Hz, 1H), 7.39-7.37 (m, 1H), 7.25 (d,** *J* **= 8.4 Hz, 1H), 7.09 (t,** *J* **= 7.2 Hz, 1H), 6.83-6.81 (m, 1H), 2.47 (s, 1H); ¹³C NMR (DMSO-***d***₆, 150 MHz) \delta= 148.7, 145.6, 140.4, 135.6, 134.5, 129.2, 129.1, 128.8, 128.7, 126.7, 125.2, 121.6, 120.1, 117.9, 117.6, 113.5, 111.6, 111.0, 98.1, 12.4.**

3-((5-Methoxy-1H-indol-3-yl)thio)-2-phenylimidazo[1,2-a]pyridine (3i): ¹H NMR (DMSO- d_6 +Di-ethyl ether, 600 MHz) δ = 11.34 (s, 1H), 8.98 (d, J = 6.6 Hz, 1H), 8.50 (d, J = 8.4 Hz, 2H), 7.96 (d, J = 2.4 Hz, 1H), 7.69-7.64 (m, 3H), 7.52 (t, J = 7.2 Hz, 1H), 7.43 (t, J = 7.2 Hz, 1H), 7.22 (d, J = 8.4 Hz, 1H), 7.13 (t, J = 6.6 Hz, 1H), 6.64 (dd, J = 8.4 Hz, 1.8 Hz, 1H), 6.49 (d, J = 1.8 Hz, 1H), 3.20 (s, 3H); ¹³C NMR (DMSO- d_6 +Di-ethyl ether, 150 MHz) δ = 154.0, 147.5, 145.3, 134.0, 131.0, 128.4, 128.3, 126.5, 125.1, 117.0, 113.0, 110.1, 99.9, 99.1, 54.2.

3-((5-Chloro-1*H***-indol-3-yl)thio)-2-phenylimidazo[1,2-***a***]pyridine (3j): ¹H NMR (CDCl₃, 600 MHz) \delta= 8.02 (d,** *J* **= 4.8 Hz, 3H), 7.54 (t,** *J* **= 7.8 Hz, 3H), 7.49 (t,** *J* **= 7.8 Hz, 3H), 7.44 (d,** *J* **= 8.4 Hz, 1H), 7.18 (s, 1H), 7.04 (t,** *J* **= 7.2 Hz, 2H); ¹³C NMR (CDCl₃, 150 MHz) \delta= 150.8, 146.5, 133.7, 129.6, 129.1, 129.0, 128.6, 128.5, 126.5, 125.4, 123.2, 117.3, 112.9, 107.5.**

3-((5-Bromo-1*H***-indol-3-yl)thio)-2-phenylimidazo[1,2-***a***]pyridine (3k): ¹H NMR (CDCl₃, 500 MHz) \delta= 8.65 (s, 1H), 8.60 (dt,** *J* **= 7 Hz, 1 Hz, 1H); 8.29-8.27 (m, 2H), 7.63 (d,** *J* **= 9 Hz, 1H), 7.59-7.56 (m, 2H), 7.52-7.48 (m, 1H), 7.38 (d,** *J* **= 1.5 Hz, 1H), 7.29-7.27 (m, 1H), 7.22-7.20 (m, 2H), 7.12 (d,** *J* **= 8.5 Hz, 1H); 6.93 (td,** *J* **= 6.5 Hz, 1 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) \delta = 150.0, 146.2, 134.6, 133.7, 129.7, 129.1, 129.0, 128.6, 128.3, 126.1, 125.8, 124.4, 122.2, 117.6, 114.1, 112.8, 110.1.**

3-((1*H***-pyrrolo[2,3-***b***]pyridin-3-yl)thio)-2-phenylimidazo[1,2-***a***]pyridine (4a): ¹H NMR (DMSO-***d***₆, 600 MHz) \delta= 12.02 (s, 1H), 8,91 (d,** *J* **= 6.6 Hz, 1H), 8.34 (d,** *J* **= 7.8 Hz, 2H), 8.13 (dd,** *J* **= 4.8 Hz,1.2 Hz, 1H), 8.01 (d,** *J* **= 2,4 Hz, 1H), 7.79 (d,** *J* **= 9 Hz, 1H), 7.60 (t,** *J* **= 7.2 Hz, 1H), 7.51 (t,** *J* **= 7.2 Hz, 1H), 7.39 (t,** *J* **= 7.2 Hz, 1H), 7.25-7.23 (m, 1H), 7.09 (t,** *J* **= 6.6 Hz, 1H), 6.86-6.84 (m, 1H); ¹³C NMR (DMSO-***d***₆, 150 MHz) \delta= 148.8. 148.5, 134.2, 131,4, 128.9, 127.1, 126.8, 125.5, 120.4, 117.5, 116.6, 113.7, 110.2, 100.5.**

2-((7-Methyl-2-phenylimidazo[1,2-*a***]pyridin-3-yl)thio)benzo[d]thiazole (4b):** ¹H NMR (CDCl₃, 600 MHz) δ = 8.3 (d, *J* = 7.2 Hz, 1H), 8.18 (d, *J* = 7.8 Hz, 1H), 7.88 (d, *J* = 7.8 Hz, 1H), 8.18 (d, *J* = 7.8 Hz, 1H), 7.88 (d, *J* = 7.8 Hz, 1H), 8.18 (d, *J* = 7.8 Hz, 1H), 7.88 (d, *J* = 7.8 Hz, 1H), 8.18 (d, *J* = 7.8 Hz, 1H), 7.88 (d, *J* = 7.8 Hz, 1H), 8.18 (d, J = 7.8 Hz, 1H), 8.1

1H), 7.56-7.53 (m, 2H), 7.44-7.34 (m, 4H), 7.23 (t, J = 7.8 Hz, 1H),6.76 (d, J = 6.6 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ =168.8, 154.7, 152.4, 148.2, 139.0, 135.5, 132.8, 129.0, 129.5, 129.4, 126.3, 124.6, 123.5, 122.1, 121.1, 116.5, 116.4, 103.3, 21.5.

Bis(2-phenylimidazo[1,2-*a***]pyridin-3-yl)sulfane (4c):** ¹H NMR (CDCl₃, 600 MHz) δ = 8.03 (d, *J* = 7.8 Hz, 1H), 7.54 (t, *J* = 7.8 Hz, 4H), 7.49-7.47 (m, 4H), 7.42 (d, *J* = 9 Hz, 2H), 7.02 (t, *J* = 7.8 Hz, 2H), 6.27 (t, *J* = 6.6 Hz, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ = 150.9, 146.5, 133.8, 129.6, 128.9, 128.6, 126.4, 125.4, 117.4, 112.6, 107.5.

1-((1*H***-indol-3-yl)thio)-3-phenylimidazo[1,5-***a***]pyridine (5a) : ¹H NMR (CDCl₃, 600 MHz) \delta = 8.84 (s, 1H), 8.08 (d, J = 7.2 Hz, 1H), 7.81 (d, J = 9 Hz, 1H), 7.78 (d, J = 7.8 Hz, 1H), 7.66-7.65 (m, 2H), 7.34-7.31 (m, 2H), 7.24-7.23 (m, 1H), 7.09-7.04 (m, 2H), 6.79-6.76 (m, 1H), 6.52-6.49 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz) \delta = 138.2, 137.0, 136.2, 133.0, 129.4, 129.5, 129.0, 128.8, 128.3, 124.0, 122.3, 121.7, 120.2, 119.5, 118.8, 113.6, 111.5, 106.3.**

1-((1*H***-indol-3-yl)thio)-3-(4-methoxyphenyl)imidazo[1,5-***a***]pyridine (5b): ¹H NMR (DMSO-d_6, 500 MHz) \delta= 11.39 (s, 1H), 8.31 (d, J = 6 Hz, 1H), 7.85 (d, J = 8.5 Hz, 1H), 7.75-7.69 (m, 4H), 7.36 (d, J = 7 Hz, 1H), 7.09 (d, J = 7.5 Hz, 1H), 7.05-6.98 (m, 2H), 6.79 (s, 1H), 3.83 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) \delta= 160.3, 138.1, 136.2, 132.8, 130.2, 129.8, 128.7, 123.3, 122.1, 121.7, 121.3, 120.3, 120.0, 119.2, 118.8, 114.5, 113.8, 111.8, 105.3, 55.4.**

1-((1*H***-indol-3-yl)thio)-3-(4-chlorophenyl)imidazo[1,5-***a***]pyridine (5c): ¹H NMR (CDCl₃, 600 MHz) \delta= 8.47 (s, 1H), 8.03 (d,** *J* **= 7.2 Hz, 1H), 7.82-7.89 (m, 2H), 7.61 (d,** *J* **= 7.8 Hz, 2H), 7.46 (s, 1H), 7.25 (d,** *J* **= 7.8 Hz, 1H), 7.11-7.05 (m, 2H), 6.81-6.78 (m, 1H), 6.54 (t,** *J* **= 6.6 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz) \delta= 136.8, 136.1, 135.0, 133.2, 130.9, 129.5, 129.2, 128.8, 122.5, 121.5, 120.3, 119.5, 118.9, 114.0, 111.4.**

Gram Scale Synthesis

An oven-dried round bottom flask was charged with 2-phenyl imidazo[1,2-*a*]pyridine (**1a**, 1 equiv., 7 mmol), KSCN (2 equiv.), $K_2S_2O_8$ (2 equiv.) in 5 mL of ACN:H₂O in 1:1 ratio. The reaction mixture was stirred at room temperature for 8 h under irradiation of blue LED light (24 W, 455 nm), at a distance of 2 cm away from light source, in open air. After 8 h of continuation of reaction, DBU (1 equiv.) was added to the same on-going reaction mixture, followed by addition of indole (**2a**, 1 equiv., 7 mmol) to it. The entire reaction was continued up to 20 h. On completion of the reaction, next reaction mixture was extracted with ethyl acetate (15 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuum. The residue was purified by column chromatography on silica gel using a solvent system of ethyl acetate/*n*-hexane to afford the desired product in 78 % yield.

Scheme 1. Gram scale synthesis ^{*a*}Reaction conditions: **1a** (7 mmol), **2a** (7 mmol), KSCN (14 mmol), DBU (1 equiv.), K₂S₂O₈ (2 equiv.), Blue LED (455 nm), solvent: 20 mL, rt.

Control Experiments

a) Reaction for 9h:

An oven-dried round bottom flask was charged with 2-phenyl imidazo[1,2-*a*]pyridine (**1a**, 1 equiv., 1 mmol), KSCN (2 equiv.), $K_2S_2O_8$ (2 equiv.) in 5 mL of ACN:H₂O in 1:1 ratio. The reaction mixture was stirred at room temperature for 8 h under irradiation of blue LED light (24 W, 455 nm), at a distance of 2 cm away from light source, in open air. After 8 h of continuation of reaction, DBU (1 equiv.) was added to the same on-going reaction mixture, followed by addition of indole (**2a**, 1 equiv., 1 mmol) to it. The entire reaction was continued up to 9 h.

Figure 1. HRMS spectra of diimidazopyridinyl disulfide.

b) Reaction in absence of DBU:

An oven-dried round bottom flask was charged with 2-phenyl imidazo[1,2-*a*]pyridine (**1a**, 1 equiv., 1 mmol), KSCN (2 equiv.), $K_2S_2O_8$ (2 equiv.) in 5 mL of ACN:H₂O in 1:1 ratio. The reaction mixture was stirred at room temperature for 8 h under irradiation of blue LED light (24 W, 455 nm), at a distance of 2 cm away from light source, in open air. After 8 h of continuation of reaction, indole (**2a**, 1 equiv.) was added to the same on-going reaction mixture. The entire reaction was continued up to 20 h.

c) Reaction with diimidazopyridinyl disulfide (1aa):

An oven-dried round bottom flask was charged with the diimidazopyridinyl disulfide (**1aa**, 1 equiv., 1 mmol), indole (2 equiv.), $K_2S_2O_8$ (1.5 equiv.) in 5 mL of ACN:H₂O in 1:1 ratio. The reaction mixture was stirred at room temperature for 12 h under irradiation of blue LED light (24 W, 455 nm), at a distance of 2 cm away from light source, in open air.

d) Reaction with TEMPO:

An oven-dried round bottom flask was charged with 2-phenyl imidazo[1,2-*a*]pyridine (**1a**, 1 equiv., 1 mmol), KSCN (2 equiv.), $K_2S_2O_8$ (2 equiv.) TEMPO (4.5 equiv.) in 5 mL of ACN:H₂O in 1:1 ratio. The reaction mixture was stirred at room temperature for 8h under irradiation of blue LED light (24 W, 455 nm), at a distance of 2 cm away from light source, in open air. After 8 h of continuation of reaction, DBU (1 equiv.) was added to the same on-going reaction mixture, followed by addition of indole (**2a**, 1 equiv.) to it. The entire reaction was continued up to 20 h.

Scheme 2. Control experiments^{*a*}.

^{*a*}Reaction conditions: (a) **1a** (1 mmol), **2a** (1 mmol), KSCN (2 equiv.), DBU (1 equiv.), $K_2S_2O_8$ (2 equiv.), Blue LED (455 nm), solvent: 5 mL, rt, 9 h; (b) **1a** (1 mmol), **2a** (1 mmol), KSCN (2 equiv.), $K_2S_2O_8$ (2 equiv.), Blue LED (455 nm), solvent: 5 mL, rt, 20 h; (c) **1aa** (1 mmol), **2a** (2 mmol), $K_2S_2O_8$ (2 equiv.), Blue LED (455 nm), solvent: 5 mL, rt, 12 h; (d) **1a** (1 mmol), **2a** (1 mmol), KSCN (2 mmol, 2 equiv.), DBU (1 equiv.), $K_2S_2O_8$ (2 equiv.), TEMPO (4.5 equiv.), Blue LED (455 nm), solvent: 5 mL, rt, 20 h; (c) **1** a (1 mmol), **2** a (1 mmol), KSCN (2 mmol, 2 equiv.), DBU (1 equiv.), $K_2S_2O_8$ (2 equiv.), TEMPO (4.5 equiv.), Blue LED (455 nm), solvent: 5 mL, rt, 20 h; (c) **1** a (1 mmol), **2** a (1 mmol), KSCN (2 mmol, 2 equiv.), DBU (1 equiv.), $K_2S_2O_8$ (2 equiv.), TEMPO (4.5 equiv.), Blue LED (455 nm), solvent: 5 mL, rt, 20 h; (c) **1** a (1 mmol), **2** a (1 mmol), KSCN (2 mmol, 2 equiv.), DBU (1 equiv.), $K_2S_2O_8$ (2 equiv.), TEMPO (4.5 equiv.), Blue LED (455 nm), solvent: 5 mL, rt, 20 h; (c) **1** a (1 mmol), **2** a (1 mmol), KSCN (2 mmol, 2 equiv.), DBU (1 equiv.), $K_2S_2O_8$ (2 equiv.), TEMPO (4.5 equiv.), Blue LED (455 nm), solvent: 5 mL, rt, 20 h.

In vitro anti-oxidant activity

The selected synthesized compounds were screened for anti-oxidant activity via DPPH assay method. Compounds **3h** (0.264 μ mol/mL; 65.15 \pm 0.185***inhibition at 500 μ g/mL) and **3j** (IC₅₀ value of 0.244 μ mol/mL; 87.49 \pm 0.051***inhibition at 500 μ g/mL) have showed the maximum anti-oxidant potential in comparison to the standard compound ascorbic acid (99.91 \pm 0.016*** μ mol/mL) (Table 1). Compounds **3c**, **3f** also displayed higher anti-oxidant activity with IC₅₀ value of 0.421 and 0.418 μ mol/mL respectively. Compounds **4b**, **3a**, **3k**, **3d**, **3b** were observed as least active compounds amongst the synthesized compounds with IC₅₀ values of 2.418, 1.719, 1.424, 1.272, 1.206 μ mol/mL, respectively.

Comp.	Conc.	%Inhibition±SEM	IC ₅₀	Comp.	Conc.	%Inhibition±SEM	IC50
3 a	500	42.29±0.040***	1.719	3b	500	67.73±0.138***	1.206
	250	36.63±0.069***			250	48.03±0.348***	
	125	31.64±0.170***			125	34.32±0.403***	
	62.5	$28.08{\pm}0.087^{***}$			62.5	31.17±0.346***	
	31.25	25.39±0.143***			31.25	27.30±0.106***	
3 c	500	84.75±0.206***	0.421	3d	500	42.46±0.03***	3d
	250	71.47±0.092***			250	35.76±0.07***	
	125	55.15±0.059***			125	28.21±0.06***	
	62.5	42.37±0.179***			62.5	25.62±0.06***	
	31.25	31.83±0.179***			31.25	21.47±0.11***	
3 e	500	68.27±0.501***	0.957	3f	500	65.72±0.117***	0.418
	250	44.76±0.289***			250	51.30±0.070***	
	125	29.98±0.062***			125	$37.41 \pm 0.070^{***}$	
	62.5	27.91±0.074***			62.5	21.23±0.061***	
	31.25	25.02±0.037***			31.25	15.49±0.120***	
3g	500	70.10±0.346***	0.771	3h	500	65.15±0.185***	0.264
	250	$48.91 {\pm} 0.068^{***}$			250	62.08±0.142***	
	125	31.45±0.113***			125	52.96±0.048***	
	62.5	25.58±0.048***			62.5	$46.42 \pm 0.040^{***}$	

Table 1: Anti-oxidant activity (µmol/mL) of synthesized C-H sulfenylated of imidazopyridines:

	31.25	22.64±0.442***			31.25	38.86±0.055***	
3 i	500	76.06±0.133***	0.842	3j	500	87.49±0.051***	0.244
	250	56.11±0.128***			250	74.58±0.053***	
	125	39.04±0.221***			125	67.47±0.247***	
	62.5	28.76±0.088***			62.5	46.24±0.155***	
	31.25	24.38±0.154***			31.25	31.52±0.184***	
3k	500	74.36±0.007***	1.424	4 a	500	61.89±0.136***	0.536
	250	41.04±0.044***			250	56.22±0.079***	
	125	$20.41 \pm 0.071^{***}$			125	33.33±0.031***	
	62.5	17.71±0.096***			62.5	30.08±0.026***	
	31.25	10.45±0.118***			31.25	28.33±0.073***	
4b	500	54.45±0.535***	2.418	5a	500	58.05±0.044***	0.602
	250	37.68±0.038***			250	48.10±0.071***	
	125	24.61±0.105***			125	41.69±0.044***	
	62.5	17.94±0.121***			62.5	31.02±0.109***	
	31.25	12.56±0.041***			31.25	25.39±0.005***	
Ascorbic	500	99.91±0.016***	0.406				
Acid	250	$88.95 {\pm} 0.001^{***}$					
(STD.)	125	75.19±0.076***					
	62.5	57.12±0.101***					
	31.25	40.90±0.163***					

This data is represented as Mean \pm SEM, n=3, values are significantly different as compared to positive control (STD) Ascorbic acid (500µg/mL) (***P<0.001).

^{1ab} ¹H NMR (CDCl_{3,} 600 MHz)

-2.310

¹H NMR (CDCI_{3,} 500 MHz)

¹H NMR (CDCI_{3,} 500 MHz)

¹H NMR (CDCI_{3,} 600 MHz)

f1 (ppm)

-2.446

			· 1	· 1	'		·	- T	·	·		'		·	·	' I		·	1				1	· 1				· 1	1	T
260	250	240	230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40
														f	1 (ppm	ו)														

¹H NMR (CDCl₃, 600 MHz)

5.0 f1 (ppm)

