Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Information

Pressure Induced Structural, Electronic and Optical Properties of CsPbI₃ Perovskite

Dibyajyoti Saikia¹, Mahfooz Alam², Chayan Das¹, Atanu Betal¹, Appala Naidu Gandi², Satyajit Sahu¹

¹Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, India 342030

²Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Jodhpur, India 342030

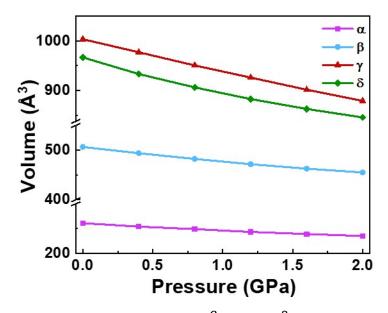
Optical properties calculation:

The optical properties were evaluated from the dielectric function $\varepsilon(\omega)$ given by,

$$\varepsilon(\omega) = \varepsilon_r(\omega) + i\varepsilon_i(\omega)$$

Here $\varepsilon_r(\omega)$ and $\varepsilon_i(\omega)$ denote the real and imaginary part of the dielectric constant. Optical characteristics such as absorption coefficient $\alpha(\omega)$, optical conductivity $\sigma(\omega)$, reflectance $R(\omega)$, energy-loss function $L(\omega)$, extinction coefficient $k(\omega)$ and refractive index $n(\omega)$ can be computed from $\varepsilon_r(\omega)$ and $\varepsilon_i(\omega)$ as follows:

$$\alpha(\omega) = \sqrt{2} \left[\sqrt{\varepsilon_r^2(\omega) + \varepsilon_i^2(\omega)} - \varepsilon_r(\omega) \right]^{1/2}$$


$$\sigma(\omega) = -\frac{i\omega}{4\pi} \varepsilon(\omega)$$

$$R(\omega) = \left| \frac{\sqrt{\varepsilon(\omega)} - 1}{\sqrt{\varepsilon(\omega)} + 1} \right|^2$$

$$L(\omega) = \frac{\varepsilon_i(\omega)}{\varepsilon_r^2(\omega) + \varepsilon_i^2(\omega)}$$

$$K(\omega) = \frac{\left[\sqrt{\varepsilon_r^2(\omega) + \varepsilon_i^2(\omega)} - \varepsilon_r(\omega) \right]^{1/2}}{2}$$

$$n(\omega) = \frac{\left[\sqrt{\varepsilon_r^2(\omega) + \varepsilon_i^2(\omega)} + \varepsilon_r(\omega) \right]^{1/2}}{2}$$

Figure S1. Variation of unit cell volume of α_- , β_- , γ_- and δ_- CsPbI₃ perovskite with applied pressure.

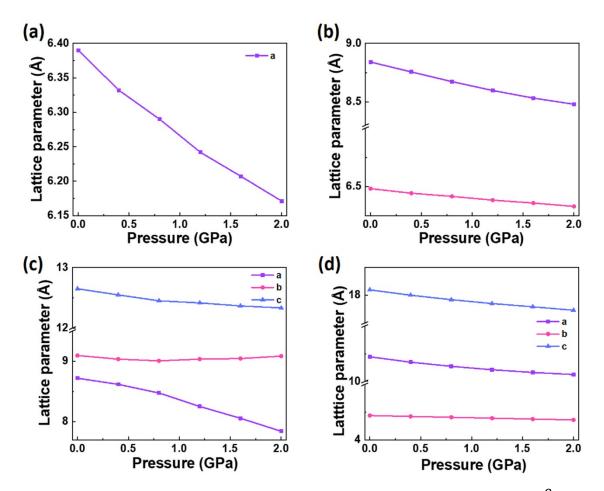
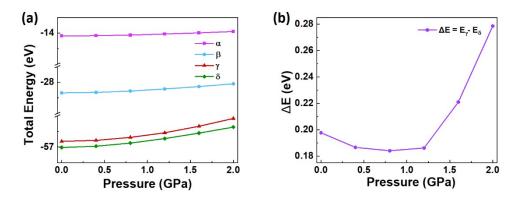



Figure S2. Lattice parameter evolution as a function of applied pressure: (a) α_{-} , (b) β_{-} (c) γ_{-} and (d) δ_{-} phases of CsPbI₃.

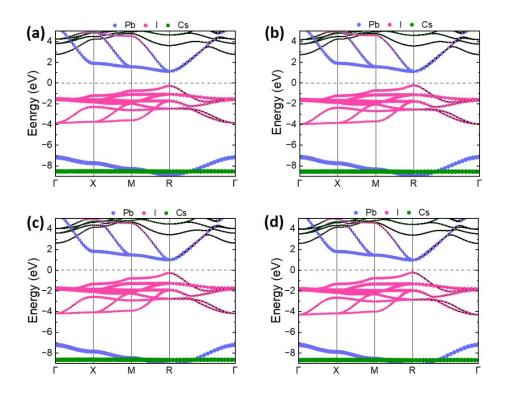

Figure S3. (a) Computed total energy of unit cells for α_- , β_- , γ_- , and δ_- phases of CsPbI₃ and (b) Total energy difference between the unit cells of γ_- and δ_- CsPbI₃ ($\Delta E = E_{\gamma} - E_{\delta}$) as a function of applied pressure.

Table S1. Calculated lattice parameters of $CsPbI_3$ polymorphs with pressure using PBE functional.

Pressure	α	β		γ			δ		
(GPa)	а	а	С	а	b	С	а	b	С
0	6.39	8.841	6.481	8.72	9.096	12.651	10.891	4.877	18.20
0.4	6.332	8.756	6.442	8.618	9.036	12.549	10.696	4.845	18.006
0.8	6.29	8.673	6.415	8.475	9.007	12.452	10.547	4.815	17.845
1.2	6.242	8.597	6.383	8.252	9.036	12.417	10.424	4.782	17.706
1.6	6.207	8.532	6.358	8.057	9.046	12.367	10.324	4.75	17.588
2	6.171	8.479	6.329	7.842	9.085	12.334	10.251	4.722	17.463

Table S2. Calculated band gaps of α_- , β_- , and γ_- phases of CsPbI₃ as a function of pressure using PBE functional with and without SOC consideration.

Pressure	α		β		γ		
(GPa)	PBE	PBE+SOC	PBE	PBE+SOC	PBE	PBE+SOC	
0	1.4782	0.3688	1.5808	0.6675	1.8070	0.8379	
0.4	1.3982	0.2980	1.5196	0.6389	1.7791	0.8492	
0.8	1.3361	0.2410	1.4715	0.6336	1.7666	0.8492	
1.2	1.2572	0.1698	1.4131	0.6084	1.7663	0.8794	
1.6	1.1971	0.1139	1.3592	0.5841	1.7766	0.9160	
2	1.1329	0.0541	1.3043	0.5479	1.7977	0.9632	

Figure S4. Calculated projected band structures of α -CsPbI₃ with applied pressure: (**a**) 0.4 GPa, (**b**) 0.8 GPa, (**c**) 1.2 GPa and (**d**) 1.6 GPa.

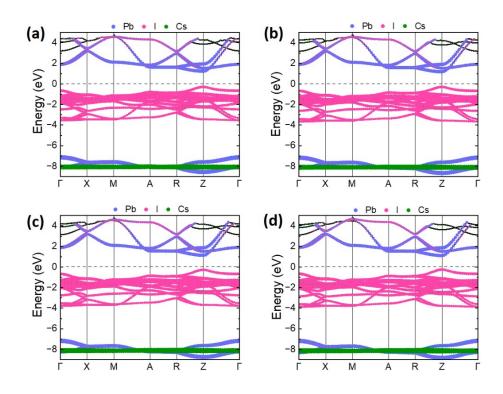
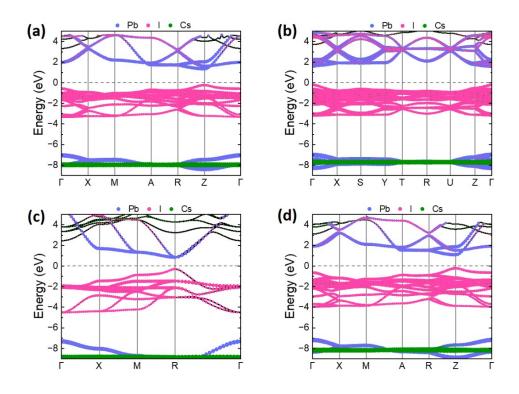



Figure S5. Calculated projected band structures of β -CsPbI₃ with applied pressure: (a) 0.4 GPa, (b) 0.8 GPa, (c) 1.2 GPa and (d) 1.6 GPa.

Figure S6. Calculated projected band structures of γ -CsPbI₃ with applied pressure: (**a**) 0.4 GPa, (**b**) 0.8 GPa, (**c**) 1.2 GPa and (**d**) 1.6 GPa.

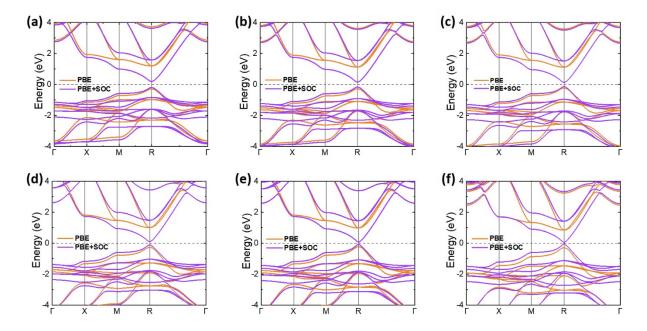
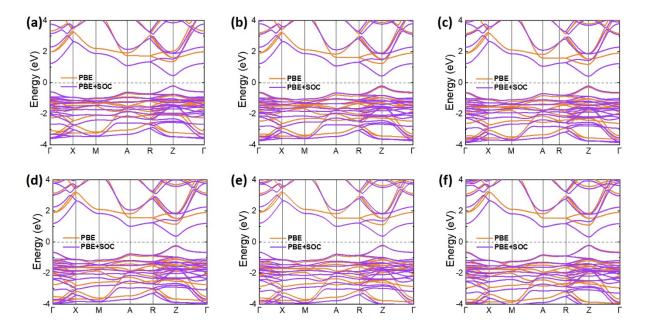
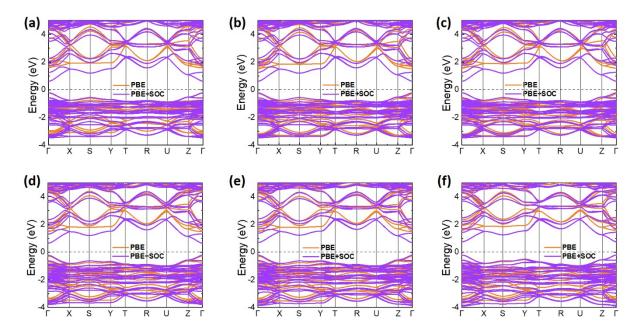




Figure S7. Computed band structures of α -CsPbI₃ with and without SOC effect at various applied pressures: (a) 0 GPa, (b) 0.4 GPa, (c) 0.8 GPa, (d) 1.2 GPa, (e) 1.6 GPa and (f) 2 GPa

Figure S8. Computed band structures of β -CsPbI₃ with and without SOC effect at various applied pressures: (a) 0 GPa, (b) 0.4 GPa, (c) 0.8 GPa, (d) 1.2 GPa, (e) 1.6 GPa and (f) 2 GPa

Figure S9. Computed band structures of γ -CsPbI₃ with and without SOC effect at various applied pressures: (a) 0 GPa, (b) 0.4 GPa, (c) 0.8 GPa, (d) 1.2 GPa, (e) 1.6 GPa and (f) 2 GPa

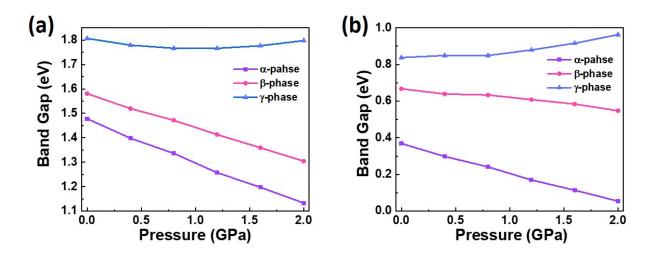


Figure S10. Variation of band gap (a) without and (b) with SOC effect as a function of applied pressure

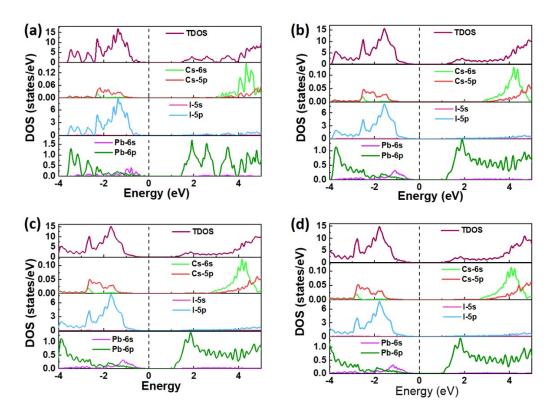


Figure S11. Computed PDOS of α -CsPbI₃ with applied pressure: (a) 0.4 GPa, (b) 0.8 GPa, (c) 1.2 GPa and (d) 1.6 GPa.

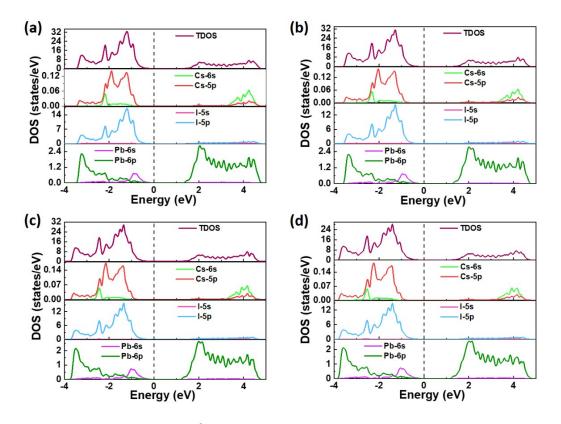
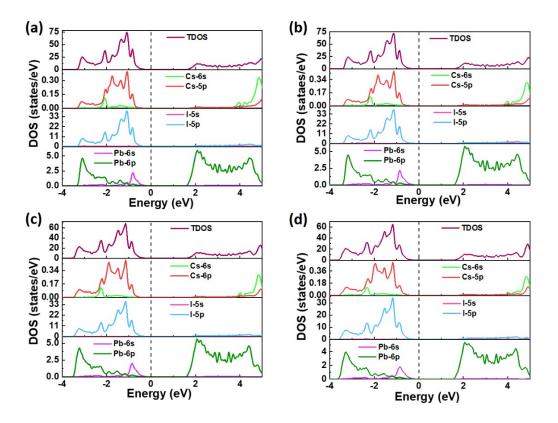
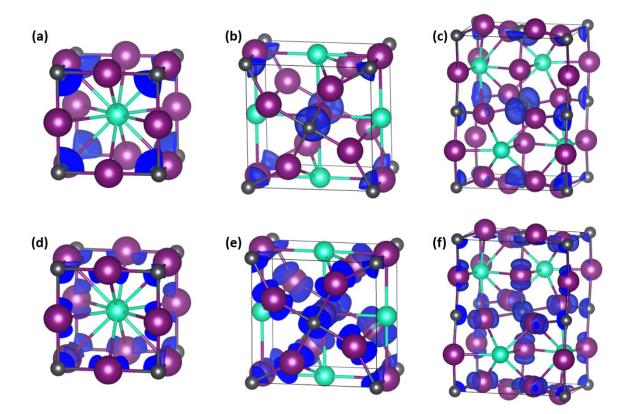




Figure S12. Computed PDOS of β -CsPbI₃ with applied pressure: (a) 0.4 GPa, (b) 0.8 GPa, (c) 1.2 GPa and (d) 1.6 GPa.

Figure S13. Computed PDOS of γ -CsPbI₃ with applied pressure: (**a**) 0.4 GPa, (**b**) 0.8 GPa, (**c**) 1.2 GPa and (**d**) 1.6 GPa.

Figure S14. Computed charge densities at CBM (upper row) and VBM (bottom row) for α -(**a**, **d**), β -(**b**, **e**), and γ -(**c**, **f**) phases of CsPbI₃ at 0 GPa.