Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

SUPPORTING INFORMATION FOR

Fe₃O₄@C Magnetite Nanocomposite: An Artificial Peroxidase Nanozyme for

Development of A Colorimetric Glucose Biosensor

Hoang V. Tran^{1, *}, Nghia D. Nguyen¹, Anh-Tuan Le^{2,3}, Luyen T. Tran¹, Thu D. Le¹, Chinh D.

Huynh¹

¹ School of Chemistry and Life Science, Hanoi University of Science and Technology, 1st Dai Co

Viet Road, Hanoi, Vietnam

² Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, Vietnam

³ Faculty of Materials Science and Engineering, Phenikaa University, Hanoi, Vietnam

Sample code	Mass ratio of	Fe@Cl ₃ .6H ₂ O	$Fe(NH_4)_2(SO_4)$	Glucose	Note
Sample code	Fe ₃ O ₄ :glucose	(gam)	2.6H2O (gam)	(gam)	
Fe ₃ O ₄ @C100	1:0	5,95	4,31	0	Neat Fe ₃ O ₄
Fe ₃ O ₄ @C101	1:1	5,95	4,31	2,5	Carbon coated Fe ₃ O ₄
Fe ₃ O ₄ @C102	1:2	5,95	4,31	5,0	Carbon coated Fe ₃ O ₄
Fe ₃ O ₄ @C103	1:3	5,95	4,31	7,5	Carbon coated Fe ₃ O ₄
Fe ₃ O ₄ @C105	1:5	5,95	4,31	12,5	Carbon coated Fe ₃ O ₄
Fe ₃ O ₄ @C107	1:7	5,95	4,31	17,5	Carbon coated Fe ₃ O ₄
Fe ₃ O ₄ @C110	1:10	5,95	4,31	25,0	Carbon coated Fe ₃ O ₄

Table SI. 1. Mass of chemicals and reagents for FeC samples preparations

			-		
Samples	A _{652nm}	Glucose concentration, mM			
		Detected concentration ^(*)	Diluted ratio	Original	
				concentration	
Refence sample	0.331	0.562	1	0.562	
Diluted1/300	0.480	0.966	300	289.90	
Diluted1/200	0.528	1.095	200	219.09	
Diluted1/100	0.793	1.808	100	180.80	

Table SI.2. Detected glucose concentration in reference sample 0.55mM glucose and diluted the5% intravenous glucose solutions using the developed biosensor

Note: (*) Extracted from the calibration curve;

Table SI.3. Detected glucose concentration	on in real samples (reference sample and 10 folds
diluted human sera: (b) serum #1; (c) serun	m #2; (d) serum #3) using the developed biosensor

Samples	A	Glucose concentration, mM			
	A652nm	Detected concentration ^(*)	Diluted	Original	
			ratio(s)	concentration	
Refence sample	0.322	0.545	N/A (*)	0.545	
Serum #01	0.416	0.7943	1/10	7.943	
Serum #02	0.268	0.3965	1/10	3.965	
Serum #03	0.298	0.4772	1/10	4.77	

Note: (*) Extracted from the calibration curve;

(**) N/A: no application;

Figure SI1. TEM images of (A,B, C) Fe₃O₄@C102 and (D, E, F) Fe₃O₄@C107

Figure SI.2. UV-vis spectra developed biosensors with diffirent subtrates were used: (a) glucose; (b) acid ascorbic, (c) galactose, (d) sacarose and (e) saccarose. Conentration of all subtrates were 0. 2 mM;

Figure SI.3. UV-vis spectra developed H_2O_2 sensor with Fe_3O_4 @C103 nanozyme with different storage time: (a) as synthesized, (b) 6 months and (c) 1 year. Storage conditions: $_{Fe_3O_4}$ @C103 nanozyme was kept in vaccumm bag and at 4 °C (in a fridge).

Figure SI.4. UV-vis spectra of the developed biosensor was tested with real samples: (a) control sample, (b-d) the 5% intravenous glucose solution was diluted by D.I water with dilution ratios v/v of (b) 1:300, (c) 1:200 and (d) 1:100, respectively.

Figure SI.5. Response UV-vis spectra of the developed biosensor tested with real samples: (a) reference sample; (c-d) 10 folds diluted human serum sample (b) serum #1; (c) serum #2; (d) serum #3