Study of two benzophenone-based difluoroboron compounds containing triphenylamine units mechanofluorochromic behaviors and latent fingerprints imaging

Bangcui Zhang¹, Chunlin Chen², Jiazhuang Tian², Shulin Gao², Yanhua Yang^{2*}, Xiangguang Li^{1,2**}, Jin

Zhang^{3***}

¹ School of Physical Science and Technology, Kunming University, Kunming, 650214, P. R. China.

² Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, 650214, P. R. China.

³ College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China.

Content

Figure S1 ¹ H NMR and ¹³ C NMR spectra of Br-BP-NH ₂
Figure S2 ¹ H NMR and ¹³ C NMR spectra of TPA-BP-NH ₂ ······3
Figure S3 ¹ H NMR and ¹³ C NMR spectra of TPA-BP-14
Figure S4 ¹ H NMR and ¹³ C NMR spectra of TPA-BP-24
Figure S5 ¹ H NMR, ¹³ C NMR, and ¹⁹ F NMR spectra of TPA-BP-BF ₂ -15
Figure S6 ¹ H NMR, ¹³ C NMR, and ¹⁹ F NMR spectra of TPA-BP-BF ₂ -26
Figure S7 HRMS of compound TPA-BP-BF ₂ -1······7
Figure S8 HRMS of compound TPA-BP-BF ₂ -2······7
Figure S9 The Φ_f and τ of compound TPA-BP-BF ₂ -1 in THF/water mixture of $f_w = 0\%$ 8
Figure S10 The Φ_f and τ of compound TPA-BP-BF ₂ -1 in THF/water mixture of f_w = 80%9
Figure S11 The Φ_f and τ of compound TPA-BP-BF ₂ -1 in THF/water mixture of $f_w = 100\%$ 10
Figure S12 The Φ_f and τ of compound TPA-BP-BF ₂ -2 in THF/water mixture of $f_w = 0\%$ 11
Figure S13 The Φ_f and τ of compound TPA-BP-BF ₂ -2 in THF/water mixture of $f_w = 80\%$ 12
Figure S14 The Φ_f and τ of compound TPA-BP-BF ₂ -2 in THF/water mixture of $f_w = 100\%$ 13
Figure S15 SEM images of compounds TPA-BP-BF ₂ -1 and TPA-BP-BF ₂ -2 in pure water
Figure S16 The Φ_f of solid of compound TPA-BP-BF ₂ -1 before and after grinding14
Figure S17 The τ of solid of compound TPA-BP-BF₂-1 before and after grinding14
Figure S18 The Φ_f of solid of compound TPA-BP-BF ₂ -2 before and after grinding15
Figure S19 The τ of solid of compound TPA-BP-BF₂-2 before and after grinding15
Figure S20 The emission wavelength of TPA-BP-BF ₂ -2 upon treated by grinding and fuming with
CH ₂ Cl ₂ repeatedly 16
Figure S21 The Φ_f and τ of the developer with compound TPA-BP-BF ₂ -117
Figure S22 The Φ_f and τ of the developer with compound TPA-BP-BF ₂ -217
Figure S23 SEM images of developers with TPA-BP-BF ₂ -1 and TPA-BP-BF ₂ -218
Figure S24 Photograph of the LFPs imaging on mobile phone tempered film and tinfoil substrates
after being processed with compounds F-1 and F-2 under 365 nm UV light·······18

Table S1 Photophysical data of two compounds insolvents19**Table S2** The emission wavelengths of two compounds in mixtures of THF/water19

* Correspond author, E-mail address: yh_yangkmu@126.com (Y. Yang); 276090212@qq.com (X. Li); jin@ynnu.edu.cn (J. Zhang).

Computational details	20
Cartesian coordinates	21

Figure S7 HRMS of compound TPA-BP-BF₂-1.

Figure S8 HRMS of compound TPA-BP-BF₂-2.

Figure S9 The Φ_f and τ of compound **TPA-BP-BF₂-1** in THF/water mixture of $f_w = 0\%$.

Figure S10 The Φ_f and τ of compound **TPA-BP-BF₂-1** in THF/water mixture of f_w = 80%.

Figure S14 The Φ_f and τ of compound **TPA-BP-BF₂-2** in THF/water mixture of f_w = 100%.

Figure S15 SEM images of compounds (a) **TPA-BP-BF₂-1** and (b) **TPA-BP-BF₂-2** in pure water (c = 1×10^{-5} mol/L), respectively.

Figure S16 The Φ_f of solid of compound **TPA-BP-BF**₂-1 before (up) and after grinding (down).

Figure S18 The Φ_f of solid of compound **TPA-BP-BF**₂-2 before (up) and after grinding (down).

Figure S19 The τ of solid of compound TPA-BP-BF₂-2 before (left) and after grinding (right).

Figure S20 The emission wavelength of TPA-BP-BF₂-2 upon treated by grinding and fuming with CH_2Cl_2 repeatedly.

Figure S21 The Φ_f (up) and τ (down) of the developer with compound **TPA-BP-BF**₂-1.

Figure S22 The Φ_f (up) and τ (down) of the developer with compound **TPA-BP-BF**₂-2.

Figure S23 SEM images of developers with (a) TPA-BP-BF₂-1 and (b) TPA-BP-BF₂-2, respectively.

Figure S24 Photograph of the LFPs imaging on mobile phone tempered film and tinfoil substrates after being processed with compounds **F-1** and **F-2** under 365 nm UV light.

			TPA-BP-BF ₂ -1	TPA-BP-BF ₂ -2
		<i>n</i> -hexane	303, 381	305, 382
		CH ₂ Cl ₂	304, 384	305,389
	UV (λ _{abs} , nm)	CH₃CN	301, 376	279, 380
		DMF	304, 379	305, 384
colvente		CH₃OH	301, 380	304, 384
solvents	PL (λ _{nm} , nm)	<i>n</i> -hexane	481	499
		CH ₂ Cl ₂	518	517
		CH₃CN	529	519
		DMF	523	510
		CH₃OH	486	512

Table S1 Photophysical data of compounds TPA-BP-BF₂-1 and TPA-BP-BF₂-2 in solvents.

Table S2 The emission wavelengths of compounds TPA-BP-BF₂-1 and TPA-BP-BF₂-2 in mixtures of THF/water.

<i>f</i> _w (%)	0	10	20	30	40	50	60	70	80	90	100
TPA-BP-BF ₂ -	471	493	488	481	480	485	490	472	488	600	603
1											
TPA-BP-BF ₂ -	488	502	506	504	504	509	512	499	494	497	586
2											

Computational details

Kohn-Sham density functional theory (DFT) has been employed to optimize the ground state geometries of the investigated complexes at the B3LYP/6-31G(d, p) level. All the optimized geometries were tested to be local minima by frequency calculations at the same level. To get insight into the photophysical properties of the investigated complexes, time-dependent density functional theory (TD-DFT) calculations at the CAM-B3LYP¹/6-31G(d, p) have been performed. The effect of the solvent was considered in all DFT and TD-DFT calculations utilizing the integral equation formalism polarized continuum model (IEF-PCM) with the dichloromethane as solvent which has been employed in the experiment. All the DFT and TD-DFT calculations were performed using the Gaussian 16 software suit.²

According to the hole-electron analysis method, the "hole" and "electron" denote where the excited electron leaves and goes, respectively. In many cases, any excitation can be identified as a definitive distribution of hole and electron. The theory proved to be a useful and powerful method in unraveling nature of electron excitations.³ The wavefunction analysis was calculated by means of the Multiwfn version 3.8(dev) code⁴ and plotted using VMD⁵ and GaussView 6.0⁶ software.

References

- Yanai, T.; Tew, D. P.; Handy, N. C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). *Chemical Physics Letters* 2004, 393 (1-3), 51-57.
- [2] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16 Rev. A.03*, Gaussian, Inc.: Wallingford, CT, 2016.
- [3] Liu, Z.; Lu, T.; Chen, Q. An sp-hybridized all-carboatomic ring, cyclo [18] carbon: Electronic structure, electronic spectrum, and optical nonlinearity. *Carbon* **2020**, *165*, 461-467.
- [4] (a) Zhang, J.; Lu, T. Efficient evaluation of electrostatic potential with computerized optimized code. *Physical Chemistry Chemical Physics* 2021, *23* (36), 20323-20328; (b) Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer. *Journal of computational chemistry* 2012, *33* (5), 580-592.
- [5] Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. *Journal of molecular graphics* **1996**, *14* (1), 33-38.
- [6] Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 6.0, Semichem Inc.: Shawnee Mission, KS, 2016.

Car	tesian coordi	nates at th	e IEF-PCM-	С	-9.053721	1.392691	-3.141883
B3 I	VP/6-31G(d n)	level.		С	-7.902103	0.667851	-2.925363
	, o 510(a, p)			0	-7.838756	0.576628	0.739290
01				С	-10.395349	2.169223	0.393592
04 TD/				С	-9.993883	1.849360	1.849149
1PF	4 507205	2 404407	0 962761	С	-10.436477	3.711468	0.254294
C C	-4.507295	-2.404407	0.802701	С	-11.818679	1.596566	0.176974
C C	-4.010982	-1.309555	-0.000520	В	-6.798927	-0.381098	1.108643
C C	-3.494240	-0.848579	-0.702469	F	-7.368142	-1.588021	1.509876
C C	-2.205202	-1.482038	-0.534157	н	-5.384672	-2.753081	1.392651
C C	-2.142217	-2.582488	0.327001	н	-3.571610	0.017829	-1.350915
C C	-3.281098	-3.036762	0.400522	Н	-1.405245	-1.122373	-1.087068
C C	-0.805085	-3.355174	0.490522	Н	-3.190062	-3.903262	1.658241
C	0.456335	-2.009/05	0.3/5/36	н	-0.186809	-0.697434	0.989601
U N	-0.919595	-4.501277	0.719055	Н	2.047720	0.295648	0.889634
N C	-5.885787	-0.009500	-0.170185	н	3.678211	-3.484452	-0.369016
C C	0.649686	-1.310328	0.672126	Н	1.433886	-4.496643	-0.191875
C C	2.041528	-0.745702	0.012990	Н	5.453918	-2.671303	0.795655
C C	3.041526	-1.508808	0.236001	Н	7.680124	-1.665024	0.666872
C C	2.030000	-2.873410	-0.055081	Н	5.929226	2.045959	-0.624926
C C	1.576783	-3.444089	0.028256	н	3.702286	1.039626	-0.497983
C C	4.388300	-0.901323	0.160023	Н	10.682093	0.801042	1.069990
C	5.545588	-1.641996	0.462980	Н	12.636392	-0.515363	0.317679
C C	6.811531	-1.0/3118	0.400692	н	12.451336	-2.016107	-1.660925
C	6.977119	0.268449	0.011219	н	10.288234	-2.165616	-2.885773
C	5.827330	1.015536	-0.303158	Н	8.345570	-0.823075	-2.152034
C	4.564860	0.441668	-0.220382	н	9.696723	2.651281	-1.417359
N	8.262833	0.850030	-0.062165	Н	10.060202	5.017805	-0.795323
C	8.456309	2.217049	0.291035	н	9.007965	5.949993	1.260164
C	9.381231	0.076882	-0.488653	н	7.602721	4.475397	2.692734
C	10.601051	0.156203	0.201323	Н	7.267902	2.101358	2.086375
C	11.699498	-0.58/819	-0.226904	Н	-5.681377	-0.597972	-2.218411
C	11.595998	-1.432962	-1.334312	Н	-10.697941	2.409408	-2.242743
C	10.380698	-1.519181	-2.01/909	Н	-9.387748	1.622757	-4.147557
C	9.282371	-0.764850	-1.60/952	Н	-7.294626	0.308307	-3.750535
C	9.245219	3.051790	-0.515823	н	-10.739489	2.298835	2.514405
C	9.447010	4.384729	-0.160651	н	-9.969641	0.775534	2.044022
C	8.854242	4.909911	0.990076	н	-9.016729	2.259853	2.108292
C	8.062565	4.082/3/	1.790534	н	-11.114556	4.135878	1.002592
C	7.870284	2.743911	1.452893	н	-10.788215	4.031066	-0.730954
C	-6.296490	-0.322029	-1.363958	н	-9.443338	4.143932	0.414072
C	-/.505163	0.388518	-1.600652	н	-12.225091	1.844246	-0.807689
C	-8.273034	0.845414	-0.487006	н	-11.819103	0.506293	0.277199
С	-9.457186	1.598710	-0.701300	н	-12.502137	2.005610	0.928803
С	-9.797628	1.839545	-2.037501				

F	-6.004573	0.158567	2.100985	С	-7.220640	1.040357	-1.774971
				0	-6.953585	-0.351173	1.612667
96				С	-9.468648	1.056782	2.002228
TPA	-BP-BF2-2			С	-9.897346	-0.384995	2.372625
С	-3.526252	-3.016715	0.537747	С	-8.613259	1.664551	3.141495
С	-3.718980	-1.695310	0.109291	С	-10.749550	1.905979	1.880287
С	-2.653279	-0.971840	-0.437354	В	-5.848199	-1.311552	1.582349
С	-1.400451	-1.568133	-0.561524	F	-6.345766	-2.612948	1.582684
С	-1.195268	-2.890789	-0.143291	Н	-4.359252	-3.566956	0.956434
С	-2.277712	-3.605969	0.395169	Н	-2.792149	0.060901	-0.739397
С	0.108470	-3.611241	-0.322804	Н	-0.586504	-1.000061	-0.997137
С	1.401823	-2.868794	-0.267803	Н	-2.123460	-4.635691	0.698045
0	0.100015	-4.826167	-0.520176	Н	0.755265	-1.262805	1.029525
Ν	-5.011969	-1.096831	0.239273	Н	2.951947	-0.190590	1.151637
С	1.582120	-1.687704	0.470974	Н	4.581696	-3.221201	-1.435128
С	2.830632	-1.077375	0.538204	Н	2.381721	-4.338674	-1.490272
С	3.941246	-1.609567	-0.142781	Н	6.415893	-2.774569	-0.167680
С	3.751996	-2.797576	-0.878546	Н	8.601260	-1.678693	-0.074973
С	2.513637	-3.421241	-0.926744	Н	6.669641	2.160664	0.108548
С	5.263394	-0.947732	-0.085102	Н	4.483385	1.065394	0.014249
С	6.457550	-1.690484	-0.128011	Н	11.563083	0.630369	0.971395
С	7.701138	-1.074241	-0.066181	Н	13.485006	-0.255251	-0.309648
С	7.804728	0.325802	0.023610	Н	13.188209	-0.985347	-2.671860
С	6.617003	1.078802	0.058717	Н	10.945596	-0.798811	-3.738304
С	5.378463	0.450975	0.014123	Н	9.033371	0.117877	-2.465995
Ν	9.067229	0.958228	0.076559	Н	10.359931	3.177669	-0.657929
С	9.254990	2.128946	0.866942	Н	10.715407	5.201808	0.718731
С	10.168147	0.432233	-0.659765	Н	9.793284	5.325294	3.028719
С	11.432876	0.322901	-0.060839	Н	8.526833	3.387425	3.946408
С	12.512736	-0.176863	-0.787277	Н	8.201301	1.352065	2.580262
С	12.346774	-0.590320	-2.111247	Н	-4.923427	-0.303104	-1.660086
С	11.087159	-0.489207	-2.706938	Н	-10.014232	2.273108	-0.387552
С	10.005904	0.026429	-1.993926	Н	-6.635946	1.013322	-2.687579
С	9.965573	3.224335	0.351682	Н	-10.468300	-0.372487	3.307673
С	10.163202	4.362727	1.131794	Н	-10.539474	-0.809175	1.593092
С	9.643234	4.434830	2.426301	Н	-9.037610	-1.042665	2.505500
С	8.929183	3.348693	2.938330	Н	-9.195457	1.685365	4.069405
С	8.742387	2.199192	2.172072	Н	-8.326205	2.694388	2.902630
С	-5.497931	-0.370152	-0.738271	Н	-7.706397	1.086052	3.320191
С	-6.734377	0.323480	-0.655323	Н	-11.431081	1.519280	1.115365
С	-7.444596	0.315396	0.572408	Н	-11.283391	1.884832	2.835261
С	-8.661556	1.040377	0.687576	н	-10.530419	2.953968	1.650054
С	-9.085811	1.720138	-0.451934	F	-5.013378	-1.089147	2.660008
С	-8.403385	1.747833	-1.696364	С	-8.994742	2.546049	-2.871232

С	-8.111468	2.455816	-4.129493	С	11.547470	-1.435323	-1.464103
Н	-8.566014	3.034713	-4.939300	С	10.323265	-1.460817	-2.124471
н	-7.110297	2.863430	-3.954489	С	9.250264	-0.718000	-1.649572
Н	-8.006261	1.423896	-4.480335	С	9.314010	3.004415	-0.298001
С	-10.395202	1.989140	-3.221488	С	9.540898	4.301533	0.143380
н	-10.334930	0.937314	-3.519578	С	8.957146	4.759411	1.320116
Н	-11.087301	2.059921	-2.377018	С	8.149542	3.900642	2.058863
Н	-10.829207	2.554119	-4.053587	С	7.933260	2.596193	1.634270
С	-9.119813	4.036048	-2.473269	С	-6.026401	0.337987	-1.309230
Н	-8.139682	4.460397	-2.232050	С	-7.206891	1.108941	-1.428001
Н	-9.546090	4.613584	-3.300715	С	-8.263548	0.987177	-0.434024
Н	-9.769304	4.175120	-1.603811	С	-9.457816	1.760212	-0.505880
				С	-9.564581	2.645168	-1.589064
Carte	esian coordin	nates at the	TD-IEF-PCM-	С	-8.565429	2.759517	-2.551635
CAM	-B3LYP/6-31G	i(d, p) level.		С	-7.391511	1.995757	-2.476029
				0	-8.081450	0.137496	0.533122
84				С	-10.621739	1.703902	0.493107
TPA-	BP-BF2-1			С	-10.470839	0.709403	1.653538
С	-4.513585	-2.385474	0.575672	С	-10.798685	3.108811	1.108719
С	-4.593415	-1.176526	-0.152005	С	-11.905119	1.321852	-0.275614
С	-3.409139	-0.646848	-0.704720	В	-6.962800	-0.831614	0.716624
С	-2.201196	-1.292586	-0.526124	F	-7.489441	-2.094710	0.521902
С	-2.121458	-2.489577	0.196155	Н	-5.416011	-2.826002	0.975744
С	-3.304845	-3.024854	0.727393	Н	-3.426075	0.294851	-1.238021
С	-0.865755	-3.267191	0.359615	Н	-1.309393	-0.863131	-0.966695
С	0.465204	-2.595440	0.282244	Н	-3.250529	-3.966538	1.261214
0	-0.920178	-4.476728	0.555967	Н	-0.133634	-0.693145	1.100950
Ν	-5.820513	-0.549831	-0.310081	Н	2.116706	0.269249	1.046126
С	0.686131	-1.283289	0.707445	Н	3.646501	-3.384345	-0.603172
С	1.961246	-0.737948	0.675080	Н	1.387888	-4.371810	-0.477010
С	3.051678	-1.476857	0.203287	Н	5.437875	-2.704702	0.670465
С	2.822853	-2.794758	-0.215248	Н	7.678873	-1.726330	0.587636
С	1.555752	-3.348122	-0.161929	Н	5.983734	2.069143	-0.464905
С	4.407864	-0.885731	0.152947	Н	3.741840	1.091842	-0.377767
С	5.546530	-1.658674	0.403404	Н	10.718959	0.656419	1.080815
С	6.816975	-1.107931	0.365800	Н	12.633133	-0.638969	0.213657
С	6.998225	0.244077	0.054649	Н	12.385848	-2.010564	-1.841927
С	5.865861	1.023355	-0.206126	Н	10.203344	-2.052461	-3.026323
С	4.598603	0.467005	-0.147622	Н	8.302090	-0.728963	-2.175453
Ν	8.290435	0.807232	0.004609	н	9.760440	2.654708	-1.222174
С	8.510042	2.138067	0.446891	н	10.169048	4.961984	-0.445677
С	9.384067	0.048573	-0.489059	н	9.130437	5.775246	1.658625
С	10.611722	0.066406	0.177447	Н	7.693708	4.242003	2.982690
С	11.685507	-0.664058	-0.314662	н	7.315315	1.925490	2.220776

Н	-5.274206	0.431125	-2.080349	С	11.027127	-0.385147	-2.653463
Н	-10.450491	3.258100	-1.691085	С	9.948850	0.090691	-1.918972
Н	-8.694818	3.452495	-3.375449	С	9.909369	3.171765	0.576713
Н	-6.623028	2.101296	-3.233724	С	10.095265	4.266507	1.410840
Н	-11.369449	0.777830	2.273688	С	9.556446	4.276928	2.693285
Н	-10.376465	-0.320095	1.306576	С	8.835784	3.173255	3.138268
Н	-9.608303	0.933638	2.281743	С	8.661649	2.066877	2.317174
Н	-11.644583	3.098952	1.801959	С	-5.305601	-0.048458	-0.741839
Н	-10.995140	3.872563	0.353346	С	-6.534580	0.637049	-0.578035
Н	-9.906099	3.404180	1.666824	С	-7.517456	0.149470	0.361322
Н	-12.139859	2.028561	-1.074156	С	-8.757263	0.823388	0.558244
Н	-11.811033	0.326857	-0.718932	С	-8.976355	1.972680	-0.194246
Н	-12.752383	1.306607	0.415744	С	-8.042872	2.473530	-1.125867
F	-6.488296	-0.661553	1.995353	С	-6.827917	1.783878	-1.299854
				0	-7.249065	-0.933215	1.034777
96				С	-9.791989	0.287201	1.550192
TPA	-BP-BF2-2			С	-10.235354	-1.129667	1.129486
С	-3.558029	-3.109019	0.173436	С	-9.192211	0.252910	2.971132
С	-3.739284	-1.744226	-0.146089	С	-11.044527	1.172189	1.595164
С	-2.614776	-0.996167	-0.551756	В	-6.071053	-1.831945	0.875851
С	-1.367320	-1.585333	-0.622212	F	-6.538158	-3.015187	0.332128
С	-1.187459	-2.937394	-0.305645	Н	-4.413750	-3.707979	0.451797
С	-2.311857	-3.684242	0.078243	Н	-2.708531	0.059808	-0.770186
С	0.112959	-3.643422	-0.434219	Н	-0.523531	-0.984932	-0.940800
С	1.401208	-2.893192	-0.349263	Н	-2.180941	-4.737954	0.295815
0	0.133399	-4.856421	-0.616222	Н	0.751056	-1.381956	1.043580
Ν	-5.003866	-1.179796	-0.063388	Н	2.942505	-0.304262	1.212293
С	1.577433	-1.765652	0.456180	Н	4.564687	-3.155816	-1.553212
С	2.819166	-1.154333	0.550111	Н	2.371310	-4.281748	-1.658760
С	3.918565	-1.636693	-0.168389	Н	6.386719	-2.788918	-0.207689
С	3.734724	-2.771446	-0.970191	Н	8.567138	-1.688693	-0.057723
С	2.502770	-3.397002	-1.046134	Н	6.625344	2.123925	0.221349
С	5.238206	-0.971748	-0.079057	Н	4.444089	1.023826	0.073666
С	6.426904	-1.707363	-0.130956	Н	11.510182	0.609361	1.046598
С	7.663680	-1.090394	-0.038107	Н	13.430820	-0.204991	-0.272897
С	7.758122	0.299255	0.092874	Н	13.128404	-0.855402	-2.650588
С	6.575056	1.044636	0.136457	Н	10.882430	-0.661674	-3.692869
С	5.342920	0.416128	0.060667	Н	8.972121	0.185322	-2.380208
Ν	9.015418	0.933391	0.178833	Н	10.320047	3.172230	-0.426792
С	9.193055	2.059133	1.024864	н	10.655302	5.122620	1.048618
С	10.114155	0.450346	-0.578896	Н	9.697332	5.136299	3.339949
С	11.377840	0.335795	0.005775	Н	8.416152	3.164456	4.139066
С	12.455193	-0.122844	-0.741039	Н	8.112136	1.202628	2.673263
С	12.286560	-0.490646	-2.071989	Н	-4.601626	0.318785	-1.475496

Н	-9.905734	2.507527	-0.067866	С	-7.260284	4.143777	-2.878782
Н	-6.093025	2.146896	-2.006573	Н	-7.556722	5.051901	-3.409247
Н	-10.985223	-1.499551	1.835187	Н	-6.323928	4.358312	-2.356439
Н	-10.690229	-1.112158	0.134748	Н	-7.070347	3.371214	-3.628905
Н	-9.401543	-1.830624	1.117047	С	-9.664295	3.500608	-2.723344
Н	-9.947410	-0.109494	3.674964	Н	-9.532188	2.681597	-3.435451
Н	-8.891538	1.255790	3.288279	Н	-10.516597	3.260786	-2.084104
Н	-8.325736	-0.404542	3.030459	Н	-9.912389	4.404927	-3.286338
Н	-11.549941	1.218959	0.626466	С	-8.604037	4.896978	-0.917849
Н	-11.750786	0.750008	2.314297	Н	-7.704755	5.088608	-0.326252
Н	-10.816331	2.191959	1.917824	Н	-8.848571	5.808364	-1.470952
F	-5.533020	-2.018911	2.127574	Н	-9.426661	4.693202	-0.229111
С	-8.376112	3.737736	-1.909221				