Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Electronic Supplementary Information (ESI)

A Facile Method for Colorimetric Determination of the Enantiomeric Purity of Amino Acids Using Poly(phenylacetylene) Possessing (S)-Mandelamide Receptors

Keisuke Ogata,^{a,‡} Airi Matsuyama,^a Ryota Suzuki,^b Satoshi Umeda,^a Katsuyuki Tsuda,^a Toshifumi Satoh,^{c,d,e} Toyoji Kakuchi,*,c,f and Ryosuke Sakai*,a

^aDepartment of Materials Chemistry, National Institute of Technology, Asahikawa College, Asahikawa 071-8142, Japan; ^bGraduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; 'Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; ^dList Sustainable Digital Transformation Catalyst Collaboration Research Platform (List-PF), Institute for Chemical Reaction Design and Discovery (ICReDD), Hokkaido University, Sapporo 001-0021, Japan; Department of Chemical & Materials Engineering, National Central University, Taoyuan 320317, Taiwan; ^fResearch Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130012, China.

[‡]Present address: Laboratory for Chemical and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan, and Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan.

E-mail: r sakai@asahikawa-nct.ac.jp; kakuchi@eng.hokudai.ac.jp

Contents

1.	CD and UV-vis absorption spectra and photograph of the poly-1 solution in the presence of va	arious	
	amino acid guests	S-2	
2.	rimetric response and changes in the CD and absorption spectra for titration experiment		
		S-5	
3.	CD and UV-vis absorption spectra and photograph of poly-1 in the presence of guest with a va	-vis absorption spectra and photograph of poly-1 in the presence of guest with a varying	
	composition of D- and L-enantiomers	S-8	
4.	NMR spectra	S-11	

4. NMR spectra

S-1

1. CD and UV-vis absorption spectra and photograph of the poly-1 solution in the presence of various amino acid guests

Figure S1. CD (upper) and UV-vis absorption (lower) spectra of **poly-1** in the presence of D- and L-Ala in THF at 20 °C. Inset shows the photograph of the THF solutions of **poly-1** in the presence of Dand L-Ala at 20 °C. The polymer concentration was 1.00 g L⁻¹ ([Ala]/[monomeric units in **poly-1**] = 20). Peak deconvolution was applied to the absorption spectrum obtained by the D-Ala addition to determine the λ_{max} value. Gel-like precipitates partially formed with the addition of L-Ala.

Figure S2. CD (upper) and UV-vis absorption (lower) spectra of **poly-1** in the presence of D- and L-Leu in THF at 20 °C. Inset shows the photograph of the THF solutions of **poly-1** in the presence of D- and L-Leu at 20 °C. The polymer concentration was 1.00 g L⁻¹ ([Leu]/[monomeric units in **poly-1**] = 20). Peak deconvolution was applied to the absorption spectrum obtained by the D-Leu addition to determine the λ_{max} value.

Figure S3. CD (upper) and UV-vis absorption (lower) spectra of **poly-1** in the presence of D- and L-Met in THF at 20 °C. Inset shows the photograph of the THF solutions of **poly-1** in the presence of D- and L-Met at 20 °C. The polymer concentration was 1.00 g L⁻¹ ([Met]/[monomeric units in **poly-1**] = 50). Peak deconvolution was applied to the absorption spectrum obtained by the D-Met addition to determine the λ_{max} value.

Figure S4. CD (upper) and UV-vis absorption (lower) spectra of **poly-1** in the presence of D- and L-Phg in THF at 20 °C. Inset shows the photograph of the THF solutions of **poly-1** in the presence of D- and L-Phg at 20 °C. The polymer concentration was 1.00 g L⁻¹ ([Phg]/[monomeric units in **poly-1**] = 100). Peak deconvolution was applied to the absorption spectrum obtained by the D-Phg addition to determine the λ_{max} value.

Figure S5. CD (upper) and UV-vis absorption (lower) spectra of **poly-1** in the presence of D- and L-Pro in THF at 20 °C. Inset shows the photograph of the THF solutions of **poly-1** in the presence of Dand L-Pro at 20 °C. The polymer concentration was 1.00 g L⁻¹ ([Pro]/[monomeric units in **poly-1**] = 10). Peak deconvolution was applied to the absorption spectrum obtained by the D-Pro addition to determine the λ_{max} value. Gel-like precipitates partially formed with the addition of L-Pro.

2. Colorimetric response and changes in CD and absorption spectra for titration experiment

a)

Figure S6. (a) Visible color change of **poly-1** upon the addition of D- and L-Ala guests in THF at 20 °C. Changes in the CD (upper) and UV-vis absorption (lower) spectra of **poly-1** in the presence of (b) D-Ala and (c) L-Ala guests in THF at 20 °C. The polymer concentration was 1.00 g L⁻¹ ([Ala]/[monomeric units in **poly-1**] = 0–200). Gel-like precipitates partially formed with the addition of more than 40 equiv. of D-Ala and more than 20 equiv. of L-Ala.

Figure S7. (a) Visible color change of **poly-1** upon the addition of D- and L-Leu guests in THF at 20 °C. Changes in the CD (upper) and UV-vis absorption (lower) spectra of **poly-1** in the presence of (b) D-Leu and (c) L-Leu guests in THF at 20 °C. The polymer concentration was 1.00 g L⁻¹ ([Leu]/[monomeric units in **poly-1**] = 0–200). Gel-like precipitates partially formed with the addition of 200 equiv. of L-Leu.

Figure S8. (a) Visible color change of **poly-1** upon the addition of D- and L-Met guests in THF at 20 °C. Changes in the CD (upper) and UV-vis absorption (lower) spectra of **poly-1** in the presence of (b) D-Met and (c) L-Met guests in THF at 20 °C. The polymer concentration was 1.00 g L⁻¹ ([Met]/[monomeric units in **poly-1**] = 0–200).

Figure S9. (a) Visible color change of **poly-1** upon the addition of D- and L-Phg guests in THF at 20 °C. Changes in the CD (upper) and UV-vis absorption (lower) spectra of **poly-1** in the presence of (b) D-Phg and (c) L-Phg guests in THF at 20 °C. The polymer concentration was 1.00 g L⁻¹ ([Phg]/[monomeric units in **poly-1**] = 0–200). Precipitates partially formed with the addition of 5–75 equiv. of D-Phg and 5–50 equiv. of L-Phg. Due to the precipitate formation, the decrease in the apparent polymer concentration was observed in both photographs and absorption spectra.

Figure S10. (a) Visible color change of **poly-1** upon the addition of D- and L-Pro guests in THF at 20 °C. Changes in the CD (upper) and UV-vis absorption (lower) spectra of **poly-1** in the presence of (b) D-Pro and (c) L-Pro guests in THF at 20 °C. The polymer concentration was 1.00 g L⁻¹ ([Pro]/[monomeric units in **poly-1**] = 0–200). Gel-like precipitates partially formed with the addition of more than 20 equiv. of D-Pro and more than 10 equiv. of L-Pro.

3. CD and UV-vis absorption spectra and photograph of poly-1 in the presence of guest with a varying composition of D- and L-enantiomers

Figure S11. (a) Photograph and (b) CD (upper) and UV-vis absorption (lower) spectra of the THF solution of **poly-1** in the presence of Ala guests with a varying composition of D- and L-enantiomers. (c) The relationship between the resulting ε value at 543 nm and the composition of L-Ala (mol%) in the added guest. The polymer concentration was 1.00 g L⁻¹ ([Ala]/[monomeric units in **poly-1**] = 20). The experiments were conducted at 20 °C.

Figure S12. (a) Photograph and (b) CD (upper) and UV-vis absorption (lower) spectra of the THF solution of **poly-1** in the presence of Leu guests with a varying composition of D- and L-enantiomers. (c) The relationship between the resulting ε value at 536 nm and the composition of L-Leu (mol%) in the added guest. The polymer concentration was 1.00 g L⁻¹ ([Leu]/[monomeric units in **poly-1**] = 20). The experiments were conducted at 20 °C.

Figure S13. (a) Photograph and (b) CD (upper) and UV-vis absorption (lower) spectra of the THF solution of **poly-1** in the presence of Met guests with a varying composition of D- and L-enantiomers. (c) The relationship between the resulting ε value at 543 nm and the composition of L-Met (mol%) in the added guest. The polymer concentration was 1.00 g L⁻¹ ([Met]/[monomeric units in **poly-1**] = 50). The experiments were conducted at 20 °C.

Figure S14. (a) Photograph and (b) CD (upper) and UV-vis absorption (lower) spectra of the THF solution of **poly-1** in the presence of Phg guests with a varying composition of D- and L-enantiomers. (c) The relationship between the resulting ε value at 547 nm and the composition of L-Phg (mol%) in the added guest. The polymer concentration was 1.00 g L⁻¹ ([Phg]/[monomeric units in **poly-1**] = 100). The experiments were conducted at 20 °C.

Figure S15. (a) Photograph and (b) CD (upper) and UV-vis absorption (lower) spectra of the THF solution of **poly-1** in the presence of Pro guests with a varying composition of D- and L-enantiomers. (c) The relationship between the resulting ε value at 538 nm and the composition of L-Pro (mol%) in the added guest. The polymer concentration was 1.00 g L⁻¹ ([Pro]/[monomeric units in **poly-1**] = 10). The experiments were conducted at 20 °C.

4. NMR spectra

Figure S16. ¹H NMR spectrum of 1 in CDCl₃ at room temperature (400 MHz).

Figure S17. ¹³C NMR spectrum of 1 in CDCl₃ at room temperature (101 MHz).

Figure S18. ¹H NMR spectrum of poly-1 in DMSO-*d*₆ at 80 °C (400 MHz).

Figure S19. ¹³C NMR spectrum of poly-1 in DMSO-*d*₆ at 80 °C (101 MHz).