Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Information

Ag-promoted Co/Al₂O₃ Catalyst without Reduction Pretreatment for the Selective

Hydrogenolysis of High-concentration Glycerol to 1,2-Propanediol

Mengtian Wang^a, Yanqiu Liu^a, Jingbo Mao^{a, b}, Hui Lv^a, and Jinxia Zhou^{a, b,*}

^a College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China

^b Dalian Key Laboratory of Green Manufacturing Technology for Fine Chemicals, Dalian, 116622, China

*Corresponding authors at: College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China.

E-mail addresses: zhoujxmail@163.com (Jinxia Zhou).

Tel.: +86 411-87403214, fax: +86 411-87402449.

Table S1 the performances of the typical Co-based catalysts

Entry	Catalyst	Reduction	Reaction conditions		$S_{1,2-\mathrm{PDO}}$	Ref. ^a
		conditions		(%)	(%)	
1	Co-Ca-Al	600 °C/H ₂	15mL 20wt% glycerol aqueous solution; 0.5 g	100	91	[16]
			catalyst; 210 °C; 4 MPa H ₂ ; 10 h			
2	Co/MgO	350 °C/H ₂	40g 10wt% glycerol aqueous solution; 0.2 g	45	42	[17]
			catalyst; 200 °C; 2 MPa H ₂ ; 9 h			
3	Co-Zn-Al	600 °C/H ₂	40g 10wt% glycerol aqueous solution; 0.3g	71	58	[18]
			catalyst; 200 °C; 2 MPa H ₂ ; 12 h			
4	CoCu/TiO ₂	350 °C/H ₂	20mL 50v/v% glycerol aqueous solution;	95	73	[19]
			catalyst-to-glycerol ratio of 0.028 (on a weight			
			basis); 250 °C; 4 MPa H ₂ ; 4 h			
5	Co/Dol	600 °C/H ₂	20mL 20wt% glycerol aqueous solution; 1.0 g	61	58	[20]
			catalyst; 200 °C; 4 MPa H ₂ ; 10 h			
6	HSiW/Co-Al	400 °C/H ₂	10 wt% glycerol aqueous solution; the feed rate of	76	60	[21]
			solution, 9.7mL/h; the flow of hydrogen, 100			
			mL/min; 4.0g catalyst; 230 °C; 3.5 MPa H ₂ ;			
7	Co-Al ₂ O ₃	400 °C/H ₂	10wt% glycerol aqueous solution; the feed flow	54	76	[22]
			rate, 9.7mL/h; the flow of hydrogen, 100 mL/min;			
			4.0g catalyst; 230 °C; 3.5 MPa H ₂			
8	Co/MSAPO-11	600 °C/H ₂	65g 7.7wt% glycerol aqueous solution; 1.0 g	94	91	[23]
			catalyst; 220 °C; 5 MPa H ₂ ; 8 h			
9	Co-ZnO	450 °C/H ₂	20g 20wt% glycerol aqueous solution; 0.6g	70	80	[24]
			catalyst; 180 °C; 4 MPa H ₂ ; 8 h			
10	CoAg/Al ₂ O ₃	without	12.5g 80wt% glycerol aqueous solution; 1.0 g	79	90	This
		pre-reduction	catalyst; 220 °C; 3 MPa H ₂ ; 6 h			work
11	CoAg/Al ₂ O ₃	without	12.5g 80wt% glycerol aqueous solution; 1.0 g	92	90	This
		pre-reduction	catalyst; 220 °C; 3 MPa H ₂ ; 8 h			work

^a The reference numbers are corresponding to the ones in the main paper.

Entry	Catalyst	Glycerol concentration	$X_{ m gly}$	$Y_{1,2-\text{PDO}}$	Selec	Selectivity (mol%)	
		(wt.%)	(mol%)	(mol%)	1,2-PDO	EG	Others
1	$Co_{2.0}Ag_{0.5}/Al_2O_3$	20	91.1	82.5	90.6	7.3	2.1
2	$Co_{2.0}Ag_{0.5}/Al_2O_3$	50	84.4	77.1	91.3	6.1	2.6
3	Co _{2.0} Ag _{0.5} /Al ₂ O ₃	80	79.3	70.7	90.2	8.1	1.7

Table S2 Effects of glycerol concentration on the hydrogenolysis of glycerol over $Co_{2.0}Ag_{0.5}/Al_2O_3$

Reaction conditions: 12.5 g of glycerol aqueous solution and 1 g of catalyst, 220 °C, 3.0 MPa H₂, 6 h; 1,2-propanediol-1,2-PDO, ethylene glycol-EG, unidentified and unlisted product mixtures were labeled as "Others".

Table S3 Effects of promoters on the hydrogenolysis of glycerol over Co_{2.0}X_{0.5}/Al₂O₃ (X=Ag, Cu, Fe, and Ni)

Entry	Catalyst	$X_{ m gly}$	Y _{1,2-PDO}	Selectivity (mol%)		
		(mol%)	(mol%)	1,2-PDO	EG	Others
1	$Co_{2.0}Ag_{0.5}/Al_2O_3$	79.3	70.7	90.2	8.1	1.7
2	$Co_{2.0}Cu_{0.5}/Al_2O_3$	17.8	12.3	69.4	0	30.6
3	$Co_{2.0}Fe_{0.5}/Al_2O_3$	1.7	0.8	60.0	0	40.0
4	$Co_{2.0}Ni_{0.5}/Al_2O_3$	6.2	1.2	20.3	0	79.7

Reaction conditions: 10 g of glycerol and 1 g of catalyst in 2.5 g of deionized water, 220 °C, 3.0 MPa H_2 , 6 h; 1,2-propanediol-1,2-PDO, ethylene glycol-EG, unidentified and unlisted product mixtures were labeled as "Others".

Fig. S1 TEM image of Co $_{2.0}Ag_{0.5}\!/Al_2O_3$ and its EDS element diagram

Fig. S2 TEM, HRTEM images of spent Co_{2.0}Ag_{0.5}/Al₂O₃

Fig. S3 XPS of Co₃O₄ and Co-CoO (Co-CoO is prepared by reduction of CoO at 400 °C for 1 h in a 5 v% H₂/Ar stream)

Fig. S4 XRD patterns of the fresh and spent $Co_{2.0}Ag_{0.5}O_x$ catalysts

Fig. S5 H₂-TPR analysis results of Co_{2.0}Ag_{0.5}/Al₂O₃, Co_{2.0}Ag_{0.5}/HY

Fig. S6 (a) XRD patterns of Co_xAg_{0.5}/Al₂O₃ with different Co loading amounts; (b) XRD patterns of Co_{2.0}Ag_x/Al₂O₃ with different Ag loading amounts

Fig. S7 (a) Graph of glycerol conversion over time at different temperatures; (b) -ln(1-X_{gly}) versus time diagram to calculate the rate constant k; (c) Arrhenius diagram to calculate the activation energy of 1,2-PDO from glycerol hydrogenolysis.