Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Three-Dimensional Iron-Cobalt Phosphides Nanosheets on Nickel Oxide Nanoparticles for Improved Glucose Oxidation Reaction

Sundaramoorthy Marimuthu[†], Harichandana Anoopkumar[†] and Govindhan Maduraiveeran*

Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu, Tamil Nadu, India.

*Corresponding Author: E-mail: maduraig@srmist.edu.in & pgmadura@yahoo.co.in; Tel. Phone: +044 2741 62628

[†]: Equal Author Contributions

Table S1. Comparison of the GOR performance of the 3D FeCoP NS|NiO NPheterostructures with the recently reported catalysts.

S.No	Materials	$E_{\rm pa}$ (V)	Ref.	Electrolyte	Ref.
			electrode		
1	NiCo ₂ O ₄	1.42	RHE	1.0 M KOH	S1
2	CuS@Ni(OH) ₂ /CC	0.49	Ag/AgCl	0.1 M NaOH	S2
3	PdSn/C	0.11	Hg/HgO	0.5 M KOH	S3
4	Pt/Ni nanowires	1.52	RHE	0.1 M NaOH	S4
5	Pd ₃ Sn/Se-C	0.110	Ag/AgCl	0.1 M KOH	S5
6	FeS NS NF	0.34	Ag/AgCl	1.0 M KOH	S6
7	Pd/C	0.25	Hg/HgO	0.1 M NaOH	S7
8	3D FeCoP NS NiO NP	0.22	Ag/AgCl	1.0 M KOH	This
					work

Electrodes	E_{app} / V	$R_{\rm s} [\Omega]$	$R_{\rm p}$ [k Ω]	<i>C</i> [µF]
	0.20	9.78	5.35	3.74
3D FeCoP NS NiO NP	0.24	13.50	10.99	7.25
	0.27	56.77	7.64	11.70
	0.29	36.11	5.91	9.54
	0.20	47.95	11.16	3.19
3D FeP NS NiO NP	0.24	35.26	8.64	4.62
	0.27	14.16	9.88	7.19
	0.29	7.05	14.21	17.74
	0.20	39.78	11.18	2.00
3D CoP NS NiO NP	0.24	44.72	7.33	4.32
	0.27	8.94	4.36	5.78
	0.29	12.28	48.51	8.24

Table S2. EIS data derived from Nyquist plots 3D FeCoP NS|NiO NP, 3D FeP NS|NiO NP, and 3D CoP NS|NiO NP electrodes.

Biscopia and Antice An

Fig. S2. SEM-EDX analysis of 3D FeCoP NS|NiO NP heterostructures.

Fig. S3. EDX analysis of 3D FeP NS|NiO NP heterostructures.

Fig. S4. EDX analysis of CoP NS|NiO NP heterostructures.

Fig. S5. XRD patterns of the developed electrodes, such as bare Ni (black curve), NiO|Ni (orange curve), 3D FeCoP NS|NiO NP (red curve), 3D FeP NS|NiO NP (blue curve), 3D CoP NS|NiO NP (green curve).

Fig. S6. CV curves of bare Ni electrode recorded without addition (black) and with the addition (doted) of 1.0 mM glucose in 1.0 m KOH at a scan rate of 10.0 mV s⁻¹.

Fig. S7. CV curves of NiO NP|Ni electrode recorded without addition (black) and with the addition (grey) of 1.0 mM glucose in 1.0 m KOH at a scan rate of 10.0 mV s^{-1} .

Fig. S8. The plot of anodic current density *vs.* various concentrations of glucose at the 3D FeP NS|NiO NP electrode.

Fig. S10. CA response of the 3D FeCoP NS|NiO NP (red curve), 3D FeP NS|NiO NP (blue curve), and 3D CoP NS|NiO NP electrodes at different applied potentials.

Fig. S11. CP response of the 3D 3FeCoP NS|NiO NP (red curve), 3D FeP NS|NiO NP (blue curve), and 3D CoP NS|NiO NP (green) electrodes at different applied currents.

Fig. S12. CV curves of 3D FeCoP NS|NiO NP electrode recorded in 1.0 M KOH solution at different scan rates from 10 to 125 mV s $^{-1}$ (a) and the corresponding plot of anodic current density vs scan rate (b).

Fig. S13. CV curves of 3D FeP NS|NiO NP electrode recorded in 1.0 M KOH solution at different scan rates from 10 to 125 mV s $^{-1}$ (a) and the corresponding plot of anodic current density vs scan rate (b).

Fig. S14. CV curves of 3D CoP NS|NiO NP electrode recorded in 1.0 M KOH solution at different scan rates from 10 to 125 mV s⁻¹ (a), and the corresponding plot of anodic current density vs scan rate (b).

Fig. S15. Fitted electronic equivalent circuit for Fig. 7.

Reference

- S1 R. Elakkiya and G. Maduraiveeran, New J. Chem., 2019, 43, 14756–14762.
- S2 G. Siva, M. A. Aziz and G. Gnana kumar, ACS Sustain. Chem. Eng., 2018, 6, 5929–5939.
- S3 A. Brouzgou, S. Song and P. Tsiakaras, *Appl. Catal. B Environ.*, 2014, **158–159**, 209–216.
- S4 S. S. Mahshid, S. Mahshid, A. Dolati, M. Ghorbani, L. Yang, S. Luo and Q. Cai, *Electrochim. Acta*, 2011, **58**, 551–555.
- S5 W. Wang, Y. Dong, L. Xu, W. Dong, X. Niu and Z. Lei, *Electrochim. Acta*, 2017, **244**, 16–25.
- S6 A. Shankar and G. Maduraiveeran, Bull. Mater. Sci., 2022, 45, 148.
- S7 D. Chai, W. Wang, F. Wang, Y. Kang, Y. Yang and Z. Lei, *Electrochim. Acta*, 2016, 189, 295–302.