Supporting Information

Epitaxial heterogeneous interfaces construction of Ni–MoS₂/N–doped porous carbon cages/CC for efficient hydrogen evolution reaction

Xin Yang[†], Ruihua Hao[†], Yu Han, Jingyang Tian^{*}, Xiangbin Ge, Minghui Cao, Jingwei Wang, Chong Lin^{*}

Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi, 330013, P. R. China

Corresponding author: jytian2012@163.com (Prof. Tian); clin2008@163.com (Prof. Lin)

† These authors contributed equally.

Figure S1. SEM image of CC.

Figure S2. SEM image of ZIF-8/CC.

Figure S4. Nitrogen adsorption-desorption isotherms.

Figure S5. Full XPS spectra of Ni-MoS₂/NCR/CC-2, MoS₂/NCR/CC, and MoS₂/CC.

Figure S6. LSV curves of the Ni-MoS₂/NCR/CC-1, -2, -3, and -4.

Figure S7. CV curves of Ni-MoS₂/NCR/CC-2 at different scan rates

Figure S8. CV curves of MoS₂/NCR/CC at different scan rates

Figure S9. CV curves of MoS_2/CC at different scan rates

Figure S10. CV curves of NCS/CC at different scan rates

Figure S11. High-resolution XPS spectra of the Ni–MoS₂/NCR/CC–2 after 36 h stability test. (a) Mo 3d, (b) S 2p, (c) Ni 2p and (d) N 1S.

Material	Structure	$\eta_{10}(mV)$	Tafel slop (mA dec ⁻¹)	Ref.
MoS ₂ /Mo foil	Nanosheets	175	55	56
N-doped MoS ₂	Nanosheets	164	71	57
2H-TaS ₂	Nanoflakes	145	121	58
$Zn_{0.1}Co_{0.9}Se_2$	Ployhedrons	140	49.9	59
Ni-MoS ₂ /NCR/CC -2	Nanoflakes	136	77	This work

Table S1. Comparison of electrocatalytic hydrogen evolution performance of different catalysts