Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

A theoretical study on metal doping for enhancing the structure

stability and CO₂ adsorption selectivity in defective UiO-66

Zewei Liu, ^a Changbin Xu, ^a Haolong Zheng, ^a Daofei Lv, ^a Junjie Peng, ^a Xin Chen, ^a

Chongxiong Duan, ^b Hongxia Xi, ^c Xun Wang ^{*a}

^a School of Environmental and Chemical Engineering, Foshan University, Foshan

528225, China

^b School of Materials Science and Hydrogen Engineering, Foshan University, Foshan,

528225, China

° School of Chemistry and Chemical Engineering, South China University of

Technology, Guangzhou 510640, China

* Corresponding author. E-mail: cexunwang@fosu.edu.cn (Xun Wang).

Atom types	σ(Å)	$\epsilon/k_b(K)$
С	3.47	47.86
Н	2.85	7.65
Ο	3.03	48.16
Be	2.45	42.74
Mg	2.69	55.86
Ca	3.03	119.77
Sr	3.24	118.17
Ba	3.30	183.04
Zr	2.78	34.70
O_CO_2	3.05	79.00
C_CO_2	2.80	27.00
N_N_2	3.31	36.00
Com_N ₂	0	0
CH_4	3.73	148.00

Table S1. Force field parameters for adsorbate and adsorbent

	1 4010 52		i calculating s	,ereetrivities us	,	
		UiO-66			OH-UiO-66	
parameters	CO_2	CH_4	N_2	CO_2	CH_4	N_2
q1	1.747	1.205	0.499	6.837	3.349	3.608
b1	0.048	0.013	0.007	0.009	0.004	8.310.10-4
c 1	1.040	0.996	1.032	0.978	0.975	0.995
q2	2.678	1.880	0.199	0.106	0.018	0.018
b2	0.003	0.001	1.470.10-5	9.660.10-5	2.420.10-17	2.420.10-17
c2	1.281	1.047	2.365	2.895	1	1
R ²	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
		OBe-UiO-66			OMg-UiO-66	
	CO_2	CH_4	N_2	CO_2	CH_4	N_2
q1	3.558	3.133	2.655	10.324	0.011	0.005
b1	0.120	0.004	0.001	0.052	0.073	1.38·10 ⁻⁹
c 1	1	0.982	1.015	0.561	1	4.896
q2	5.980	0.018	0.018	1.348	2.870	3.010
b2	0.003	2.420.10-17	2.420.10-17	0.620	0.004	0.001
c2	1	1	1	1	1	1
\mathbb{R}^2	0.9997	0.9999	0.9999	0.9999	0.9999	0.9999
		OCa-UiO-66			OSr-UiO-66	
	CO_2	CH_4	N_2	CO_2	CH_4	N_2
q1	3.910	5.820	3.073	2.963	2.600	0.099
b1	0.027	5.48.10-4	0.002	2.173	0.002	0.002
c 1	1	1.000	1.001	1	1	1
q2	2.900	1.214	-	4.086	0.441	2.634
b2	1.954	0.007	-	0.030	0.010	0.002
c2	1	1	-	1	1	1
\mathbb{R}^2	0.9991	0.9999	0.9999	0.9992	0.9999	0.9998
		OBa-UiO-66				
	CO_2	CH_4	N_2			
q1	2.772	2.485	2.645			
b1	3.011	0.003	0.003			
c 1	1	1	0.989			
q2	3.882	0.403	0			
b2	0.033	0.011	1			
c2	1	1	1			
\mathbb{R}^2	0.9984	0.9999	0.9999			

Table S2. Parameters for calculating selectivities using IAST

Fig. S1. The simplified metal clusters for (a) UiO-66, (b) OH-UiO-66 and (c) OM-UiO-66 (M=Be, Mg, Ca, Sr, Ba) (white: H, grey: C, red: O, cyan: Zr, green: M)

Fig. S2. The COM of N_2 molecules in (a, b) UiO-66, (c, d) OH-UiO-66 and (e,f) OBa-UiO-66 at 1kPa (a, c, e) and 4kPa (b, d, f)

Fig. S3. The COM of CH_4 molecules in (a, b) UiO-66, (c, d) OH-UiO-66 and (e,f) OBa-UiO-66 at 1kPa (a, c, e) and 4kPa (b, d, f)