Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Efficient Interfacial Optimization of NiO_x-based Perovskite Solar Cells Via a Butterfly-Structured Semiconductor

Zhihui Wang,^{1,*} Zhe Wang,¹ Zhaolong Ma,¹ Ruifeng Chen,¹ Ting Wang,² Jiali Kang,² Guang Hu,^{1,*} Xueping Zong,^{2,*}

¹ National & Local Joint Engineering Research Center for Deep Utilization Technology of Rocksalt Resource, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian 223003, China.

² Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.

Corresponding author:

E-mail: wangzhihui_tju@126.com

E-mail: guanghu2019@hyit.edu.cn

E-mail: xp_zong@email.tjut.edu.cn

List of Content

1.	Characterization	.S3
2.	Device Fabrication	.S4
3.	Figures	.85
4.	Tables	S7
5.	References	.S8

Number of pages: 8

Number of figures: 6

Number of tables: 4

1 Characterization.

The molecular structure was characterized utilizing a Bruker AV400 Spectrometer operating at 400 MHz and 100 MHz for ¹H NMR and ¹³C NMR, respectively. UV-vis absorption spectra were recorded with a Shimadzu UV-2600 absorption spectrophotometer. Fluorescence emission spectra were recorded with a Hitachi F-4500 FL Spectrophotometer. Differential scanning calorimetry (DSC) was performed on a NETZSCH DSC 200 F3 differential scanning calorimeter with a scanning from - 40 °C to 300 °C at a rate of 10 °C min⁻¹ under a nitrogen atmosphere. Ultraviolet photoelectron spectroscopy (UPS) was carried out using a Thermo ESCALAB XI+ analysis system.

Hole mobility was evaluated using the space-charge-limited current (SCLC) method with a device configuration of ITO/PEDOT:PSS/HTMs/Ag.^{1, 2} The hole mobility was calculated according to the formula below:

$$J = 9\mu\varepsilon_0\varepsilon_r V^2/(8d^3)$$

Here, $\varepsilon_r \approx 3$ represents the average dielectric constant of the film, ε_0 is the vacuum permittivity of the free space (8.85*10⁻¹² F/m), μ is the carrier mobility, *d* signifies the thickness of HTM film, and *V* stands for the applied voltage.

The SEM images were obtained by a JEOL JSM-7800 scanning electron microscope. The XPS spectra were acquired with a Kratos X-ray photoelectron spectrometer (AXIS Ultran HAS), which is equipped with monochromatic Al K α (1,486.6 eV) and non-monochromatic HeI (21.22 eV) sources. X-ray diffraction (XRD) characterization was performed using a Bruker D8 X-ray diffractometer

(Bruker D8 Advance diffractometer, Germany). Steady-state photoluminescence (PL) and time-resolved photoluminescence (TRPL) were measured through Spectrofluorometer FS5 with excitation at 500 nm.

The trap-state density (N_t) was obtained using a SCLC method by collecting the *I-V* characteristics of devices under dark conditions.³ The N_t was calculated using the formula below:

$$N_{\rm t} = 2\varepsilon_0\varepsilon_{\rm r}V_{\rm TFL}/{\rm q}L^2$$

in which V_{TFL} stands for the trap filling limit voltage, ε_0 represents the vacuum permittivity of the free space that is generally specified as 8.85×10^{-12} F m⁻¹; ε_r signifies the material dielectric constant (~32). *L* is the thickness of perovskite films, and *q* is 1.6×10^{-19} C.

J-V curves were recorded by a Keithley 2400 source/meter under AM 1.5 illustration (100 mW cm⁻²), calibrated with a standard Si photodiode detector.

2 Device Fabrication

A structure of ITO/NiO_x/Y34/MAPbI₃/PC₆₀BM/Bathocuproine (BCP)/Ag was utilized for the fabrication of perovskite solar cells (PSCs). The cleaned ITO glass substrates were processed in an ultraviolet Ozone cleaner for 30 min. NiO_x nanoparticles were dispersed in deionized water at a concentration of 20 mg/mL. The freshly prepared NiO_x ink was spin-coated onto the ITO substrate at 2000 rpm for 30 s, and then annealed at 120 °C for 15 min in ambient air. Subsequently, Y34 in CB with a concentration of 5 mg mL⁻¹ was spin-coated onto the substrate at 3000 rpm for 30 s and annealed at 100 °C for 10 min. The perovskite layers were fabricated through a one-step spin-coating procedure. PbI₂ (466 mg) and MAI (159 mg) were added into 1 mL mixed solution of DMSO (71 uL) and DMF (639 uL), and further stirred for 30 min at 60 °C. Afterwards, the filtered precursor solution was spin-coated on the NiO_x layer at 4000 rpm for 25 s. 110 uL of CB was poured on the spinning substrate. The substrates were heated at 100 °C for 10 min, followed by spin-coating a solution of PC₆₁BM (20 mg/mL in CB) at 3000 rpm for 30 s. Subsequently, a BCP solution (0.5 mg/mL in IPA) was deposited at 4000 rpm for 40 s as a buffer layer. Finally, the electrode Ag with a thickness of 100 nm was coated on the top of BCP film using thermal evaporation.

Figure S1. ¹H NMR spectra of Y34 (CDCl₃).

Figure S2. ¹³C NMR spectra of Y34 (CDCl₃).

Figure S3. Cyclic voltammetry curves of (a) Y34 and (b) ferrocene in CH_2Cl_2 solution.

Figure S4. The statistics of PSCs based on NiO_x and NiO_x/Y34. (a) V_{OC} and (b) J_{sc} .

Figure S5. Trap density measured utilizing the SCLC method.

4 Tables.

Table S1. Electrochemical and optical data of Y34.

HTM	$\lambda_{int}/\mathrm{nm}$	$E_g/eV^{(a)}$	$E_{ m HOMO}$ /V ^(b)	$E_{\rm HOMO}$ /eV ^(c)	$E_{\rm LUMO}/{\rm eV^{(d)}}$
Y34	441	2.81	0.76	-5.26	-2.45

^(a) $E_g = 1240/\lambda_{int}$. λ_{int} is the intersection point of normalized UV-visible absorption curve and the fluorescence emission curve.

^(b) The redox potential obtained from the CV plots and it was standardized with ferrocene.

^(c) $E_{\text{HOMO}} vs (\text{Ag/AgCl}) (\text{eV}) = -(E_{\text{HOMO}}^{(b)} + 4.5].$ ^(d) $E_{\text{LUMO}} (\text{eV}) = E_{\text{HOMO}}^{(c)} + E_{\text{g}} (\text{eV}).$

HTMs	$V_{ m oc}$ ^a /V	$J_{\rm sc}$ ^a /mA cm ⁻²	FF ^a /%	PCE a/%
NiO _x	1.054 ± 0.007	22.66±0.197	72.75±1.673	17.37±0.488
NiO _x /Y34	1.075±0.005	22.78±0.079	75.03±0.591	18.36±0.174

Table S2. Calculated result of repeatability test.

Table S3. Fitted carrier lifetime of perovskite films measured by TRPL measurements.

Sample	τ_1 / ns	A1/%	τ_2 / ns	A2/%	$ au_{\rm avg}/{ m ns}$
MAPbI ₃	28.98	91.61	321.65	4.39	176.53
NiO _x	21.11	90.69	207.25	9.31	114.55
NiO _x /Y34	12.92	90.24	143.21	9.75	83.94

Note: The average lifetime can be calculated with the equation of: $\tau_{avg} = (A_1\tau_1^2 + A_2\tau_2^2)/(A_1\tau_1 + A_2\tau_2)$, where parameters A_1 and A_2 are the amplitude fraction foreach decay component, and τ_1 and τ_2 represent the time constant of the two types of decay.

Table S4. Fitted XRD ratio of perovskite films deposited on different substrates.

Sample	ITO/NiO _x /Perovskite	NiO _x /Perovskite/Y34	ITO/Perovskite
FWHM	0.29826	0.26693	0.34139

4 References.

1. Choi, H.; Lee, J.; Kim, H.; Kim, J.; Park, T.; Song, S., Water-Repelling Dopant-Free Hole-Transporting Materials for Stable and Efficient Planar Perovskite Solar Cells. *ACS Sustainable Chemistry & Engineering* **2022**, *10* (45), 14948-14954.

2. Cheng, Y.; Fu, Q.; Zong, X.; Dong, Y.; Zhang, W.; Wu, Q.; Liang, M.; Sun, Z.; Liu, Y.; Xue, S., Coplanar Phenanthro[9,10-d]Imidazole Based Hole-transporting Material Enabling over 19%/21% Efficiency in Inverted/Regular Perovskite Solar Cells. *Chemical Engineering Journal* **2021**, 421, 129823.

3. Sun, X.; Zhang, C.; Gao, D.; Zhang, S.; Li, B.; Gong, J.; Li, S.; Xiao, S.; Zhu, Z.; Li, Z. a., Boosting Efficiency and Stability of NiO_x-Based Inverted Perovskite Solar Cells Through D-A Type Semiconductor Interface Modulation. *Adv. Funct. Mater.* **2024**, *34* (25), 2315157.