A fluffy sphere-like NiCoCu-carbonate hydroxide based electrocatalyst for the oxygen evolution reaction in pH neutral electrolyte solution

Li Yu,* Xiaocai Ma, Qin Liang

College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.

* To whom correspondence should be addressed.

E-mail addresses: yulisunshine@163.com

Materials. All chemicals were purchased from Aladdin (analytical grade) and used without any further purification. The aqueous solutions were prepared using doubledistilled deionized water (Milli-Q grade, Millipore).

Synthesis of $M_2(OH)_2CO_3$. $M_2(OH)_2CO_3$ (M=Ni, Co, and Cu) was synthesized via the reference with some amendment [1-3]. 3 mmol of cobaltous nitrate and 3 g of urea were dispersed in 70 mL of deionized water with stirring for 1 h. Subsequently, the formed mixture was transferred to a reaction vessel and heated to 180 °C for 3 h. After the solution cooled down naturally, the formed powder was obtained by filtration and washed with water and ethanol at least six times. Afterwards, the target product (Co₂(OH)₂CO₃) was dried at 45 °C for 12 h. For preparations of Ni₂(OH)₂CO₃ and Cu₂(OH)₂CO₃, replace cobaltous nitrate with nickel nitrate and copper nitrate, while keeping the rest of the steps unchanged.

Fig. S1 (a) XRD patterns of (NiCoCu)(OH)₂(CO₃)-X-Y prepared at different hydrothermal time: 5 h, 10 h, 15 h, and 20 h at 100 °C. (b) XRD patterns of (NiCoCu)(OH)₂(CO₃)-X-Y prepared at different hydrothermal temperatures: 100 °C, 125 °C, 150 °C, and 175 °C for 10 h.

Fig. S2 (a) FT-IR spectra of (NiCoCu)(OH)₂(CO₃)-X-Y prepared at different hydrothermal time: 5 h, 10 h, 15 h, and 20 h at 100 °C. (b) FT-IR spectra of (NiCoCu)(OH)₂(CO₃)-X-Y prepared at different hydrothermal temperatures: 100 °C, 125 °C, 150 °C, and 175 °C for 10 h.

Fig. S3 XPS of (NiCoCu)(OH)₂(CO₃)-10 h-100 °C in the energy regions of O 1s.

Fig. S4 The high-resolution Co 2p spectra of the $(NiCoCu)(OH)_2(CO_3)-10$ h-100 °C and $Co_2(OH)_2CO_3$.

Fig. S5 SEM images of $(NiCoCu)(OH)_2(CO_3)$ -X-Y prepared at different hydrothermal time: (a) 5 h, (b) 10 h, (c) 15 h, and (d) 20 h at 100 °C.

Fig. S6 SEM images of $(NiCoCu)(OH)_2(CO_3)$ -X-Y prepared at different hydrothermal temperatures: (a) 100 °C (b) 125 °C, (c) 150 °C, and (d) 175 °C for 10 h.

Fig. S7 (a) LSV curves of (NiCoCu)(OH)₂(CO₃)-X-Y prepared at different hydrothermal time: 5 h, 10 h, 15 h, and 20 h at 100 °C. (b) LSV curves of (NiCoCu)(OH)₂(CO₃)-10 h-100 °C prepared at different hydrothermal temperatures: 100 °C, 125 °C, 150 °C, and 175 °C for 10 h.

Fig. S8 LSV curves of $(NiCoCu)(OH)_2(CO_3)-10$ h-100 °C, $Ni_2(OH)_2CO_3$, $Co_2(OH)_2CO_3$, and $Cu_2(OH)_2CO_3$. Conditions: Tris-HCl electrolyte (pH = 7.1, 0.2 M), scan rate: 60 mV/s.

Fig. S9 CV curves measured within the range of 1.5 to 1.6 V vs. RHE with scan rate from 20 to 200 mV s⁻¹ of (a) (NiCoCu)(OH)₂(CO₃)-10 h-100 °C, (b) RuO₂, and (c) Co₂(OH)₂CO₃, measured in 0.2 M Tris-HCl buffer solution (pH = 7.1).

Fig. S10 ECSA-normalized LSV curves of (NiCoCu)(OH)₂(CO₃)-10 h-100 °C, RuO₂, and Co(OH)₂CO₃ for water oxidation.

Fig. S11 LSV curves of FTO-substrate and (NiCoCu)(OH)₂(CO₃)-10 h-100 °C.

Fig. S12 XPS of $(NiCoCu)(OH)_2(CO_3)$ -10 h-100 °C before and after the electrochemical stability experiment in the energy regions of (a) Ni 2p, (b) Co 2p, (c) Cu 2p, and (d) O 1s.

Fig. S13 (a) TEM images and (b) XRD patterns of (NiCoCu)(OH)₂(CO₃)-10 h-100 °C before and after chronoamperometric measurement.

Fig. S14 Polarization curves of $(NiCoCu)(OH)_2(CO_3)-10$ h-100 °C under different iR compensation levels in Tris-HCl electrolyte (pH = 7.1, 0.2 M).

Fig. S15 SEM images of $(NiCoCu)(OH)_2(CO_3)-10$ h-100 °C with varying contents: (a-d) number 1-4 (corresponding to the number in the ICP-AES (Table S4)).

Table S1 BET surface areas and structural parameters of (NiCoCu)(OH)₂(CO₃)-X-100 °C

Catalyst	BET surfaces area	Pore size	Pore volume
Catalyst	$(m^{2}/g)^{a}$ (nm) ^b		$(cm^{3/g})^{c}$
(NiCoCu)(OH) ₂ (CO ₃)-5 h-100 °C	27.9	1.9	0.1
(NiCoCu)(OH) ₂ (CO ₃)-10 h-100 °C	55.3	2.2	0.3
(NiCoCu)(OH) ₂ (CO ₃)-15 h-100 °C	46.7	2.8	0.3
(NiCoCu)(OH) ₂ (CO ₃)-20 h-100 °C	32.5	3.3	0.4

^a Surface area obtained from BET measurements.

^b BJH desorption pore size distribution.

^c BJH desorption pore volume.

	•	, , , ,	
Cotalvat	BET surfaces area	Pore size	Pore volume
Catalyst	$(m^{2}/g)^{a}$	(nm) ^b	$(cm^{3}/g)^{c}$
(NiCoCu)(OH) ₂ (CO ₃)-10 h-100 °C	55.3	2.2	0.3
(NiCoCu)(OH) ₂ (CO ₃)-10 h-125 °C	19.7	0.9	0.02
(NiCoCu)(OH) ₂ (CO ₃)-10 h-150 °C	13.9	0.5	0.01
(NiCoCu)(OH) ₂ (CO ₃)-10 h-175 °C	2.5	0.4	0.01

Table S2 BET surface areas and structural parameters of (NiCoCu)(OH)₂(CO₃)-10 h-Y

^a Surface area obtained from BET measurements.

^b BJH desorption pore size distribution.

^c BJH desorption pore volume.

and their OER activity					
Number Sample	Samula	Ni	Co	Cu	Overpotential
	Sample	(ppm)	(ppm)	(ppm)	(10 mA/cm^2)
1		2.43	5.27	1.93	490 mV (this work)
2	(NiCoCu)(OH) ₂ (CO ₃)	5.33	5.96	1.76	435 mV
3	-10 h-100 °C	1.86	5.11	5.92	529 mV
4		5.58	5.39	5.10	621 mV

Table S3 ICP-AES date of (NiCoCu)(OH)₂(CO₃)-10 h-100 °C with different doped metal content and their OER activity

Table S4 EIS fitting results of the components of the circuit shown in Fig. 4d.

Catalyst	$R_{s}\left(\Omega ight)$	CPE (10 ⁻⁶)	$R_{ct}\left(\Omega ight)$
(NiCoCu)(OH) ₂ (CO ₃)-10 h-100 °C	89	0.889	332
RuO_2	96	0.793	624
Co(OH) ₂ CO ₃	107	0.975	1433

Table 55 Comparison of some reported materials and this work					
Electrocatalyst	Overpotential (mV)	Tafel	Ref		
	$@10 \text{ mA/cm}^2$	mV dec ⁻¹			
Fe-CCHH/NF-30	200 (1.0 M KOH)	50	4		
Cu-doped (020)-faceted CCOH	210 (1.0 M KOH)	67	5		
t-Co ^{II} Co ^{III}	240 (1.0 M KOH)	79	6		
CN-xFe HMs	258 (1.0 M KOH)	48.7	7		
Co _{1.9} Ni _{0.1} (CO ₃)(OH) ₂ /GP	266 (1.0 M KOH)	44.8	8		
5%W-CCH	318 (1.0 M KOH)	65.45	9		
CoCH	320 (1.0 M KOH)	38.8	10		
CoCH/NF	332 (1.0 M KHCO ₃)	126	11		
(NiCoCu)(OH) ₂ (CO ₃)-10 h-100 °C	490 (pH 7.1, Tris-HCl)	198	This work		
CoIr	373 (pH 7, PBS)	117.5	12		
C/Co-NPs	390 (pH 7, NaPi)	60	13		
NiFeO _x /C	400 (pH 7, PBS)		14		
Co–P–B/rGO	400 (pH 7, PBS)	68	15		
$MnS_{0.10}O_{1.90}/MnCo_{2}S_{4}$	414 (0.2 M PBS)	78	16		
$Ni_{0.33}Co_{0.67}S_2$	420 (pH 7, PBS)	68	17		
3D Co-Pi NA/Ti	450 (pH 7.0, PBS)	187	18		
CCH@Co-Pi NA/Ti	460 (0.1 M PBS)	284	19		
$Fe_{10}Co_{40}Ni_{40}P$	466 (pH 7, PBS)	246	20		
NiCo ₂ S ₄ @N/S-rGO	470 (pH 7, PBS)		21		
Co–Se–S–O	480 (pH 7, PBS)		22		
Co ₃ (BO ₃) ₂ @CNT	487 (pH 7, PBS)	63	23		
Co ₃ O ₄ QDs	490 (pH 7, PBS)	80	24		

 Table S5 Comparison of some reported materials and this work

Cu ₆ Co ₇ /CC	500 (pH 7, PBS)	147	25
Co _{0.7} Fe _{0.3} P/CNT	500 (pH 7, PBS)	56	26
CoO/CoSe ₂ hybrid	510 (pH 6.86, PBS)	137	27
CoP NA/CC	536 (pH 7, PBS)	85	28
δ-MnO ₂ /FTO	600 (pH 6, Na ₂ SO ₄)		29

References

[1] X. Zhou, Y. Zhong, M. Yang, Q. Zhang, J. Wei and Zhen Zhou, ACS Appl. Mater. Interfaces, 2015, 7, 12022.

- [2] S. Zhao, Z. Wang, Y. He, H. Jiang, Y. W. Harn, X. Liu, C. Su, H. Jin, Y. Li, S.
- Wang, Q. Shen and Z. Lin, Adv. Energy Mater., 2019, 9, 1901093.
- [3] L. Zheng, P. Xu, Y. Zhao, J. Peng, P. Yang, X. Shi and H. Zheng, *Electrochim. Acta*, 2022, 412, 140142.
- [4] S. Zhang, B. Huang, L. Wang, X. Zhang, H. Zhu, X. Zhu, J. Li, S. Guo and E. Wang, ACS Appl. Mater. Interfaces, 2020, 12, 40220.
- [5] X. Y. Liu, H. Bi, L. Li, B. Li, Y. H. Wang, J. Shi, J. Nie, G. F. Huang, W. Hu and W. Q. Huang, *Appl. Phys. Lett.*, 2023, **123**, 093901.
- [6] A. Indra, U. Paik and T. Song, Angew. Chem. Int. Ed., 2018, 57, 1241.
- [7] Y. Liu, G. Chen, R Ge, K Pei, C. Song, W. Li, Y. Chen, Y. Zhang, L. Feng and R. Che, *Adv. Funct. Mater.*, 2022, 2200726.
- [8] M. Jin, J. Li, J. Gao, W. Liu, J. Han, H. Liu, D. Zhan and L. Lai, ACS Appl. Energy Mater., 2020, 3, 7335.
- [9] M. Jin, J. Li, J. Gao, W. Liu, J. Han, H. Liu, D. Zhan and L. Lai, J. Colloid Interf. Sci., 2021, 587, 581.
- [10] J. Li, X. Li, Y. Luo, Q. Cen, Q. Ye, X. Xu, F. Wang, Int. J. Hydrogen. Energ., 2018, 43, 9635.
- [11] M. Xie, L. Yang, Y. Ji, Z. Wang, X. Ren, Z. Liu, A. M. Asiri, X. Xiong and X. Sun, *Nanoscale*, 2017, 9, 16612.
- [12] Y. Zhang, C. Wu, H. Jiang, Y. Lin, H. Liu, Q. He, S. Chen, T. Duan and Li Song,

- Adv. Mater., 2018, 30, 1707522.
- [13] J. Zhu, F. Lambert, C. Policar, F. Mavré and B. Limoges, J. Mater. Chem. A, 2015, 3, 16190.
- [14] Y. Qiu, L. Xin and W. Li, *Langmuir*, 2014, **30**, 7893.
- [15] P. Li, Z. Jin and D. Xiao, J. Mater. Chem. A, 2014, 2, 18420.
- [16] K. Wang, Z. Wang, Y. Liu, J. Liu, Z Cui, X. Zhang, F. Ciucci and Z. Tang, Chem. Eng. J., 2022, 427, 131966.
- [17] Z. Peng, D. Jia, A. M. Al-Enizi, A. A. Elzatahry and G. Zheng, *Adv. Energy Mater.*, 2015, 1402031.
- [18] L. Xie, R. Zhang, L. Cui, D. Liu, S. Hao, Y. Ma, G. Du, A. M. Asiri and Xuping Sun, Angew. Chem. Int. Ed., 2016, 55, 1.
- [19] L. Cui, D. Liu, S. Hao, F. Qu, G. Du, J. Liu, A. M. Asirie and X. Sun, *Nanoscale*, 2017, 9, 3752.
- [20] Z. Zhang, J. Hao, W. Yang and J. Tang, RSC Adv., 2016, 6, 9647.
- [21] Q. Liu, J. Jin and J. Zhang, ACS Appl. Mater. Interfaces, 2013, 5, 5002.
- [22] Z. M. Luo, J. W. Wang, J. B. Tan, Z. M. Zhang and T. B. Lu, *ACS Appl. Mater*. *Interfaces*, 2018, **10**, 8231.
- [23] E. A. Turhan, S. V. K. Nune, E. Ülker, U. Şahin, Y. Dede, F. Karadas, *Chem.-Eur. J.*, 2018, **24**, 10372.
- [24] L. Ma, S. F Hung, L. Zhang, W. Cai, H. B. Yang, H. M. Chen and B. Liu, *Ind. Eng. Chem. Res.*, 2018, 57, 1441.
- [25] M. Wang, W. Zhong, S. Zhang, R. Liu, J. Xing and G Zhang, J. Mater. Chem. A, 2018, 6, 9915.
- [26] X. Zhang, X. Zhang, H. Xu, Z. Wu, H. Wang and Y Liang, *Adv. Funct. Mater.*, 2017, 27, 1606635.
- [27] K. Li, J. Zhang, R. Wu, Y. Yu and B. Zhang, Adv. Sci., 2016, 3, 1500426.
- [28] T. Liu, L. Xie, J. Yang, R. Kong, G. Du, A. M. Asiri, X. Sun and Liang Chen, *ChemElectroChem*, 2017, 4, 1840.
- [29] T. Takashima, K. Hashimoto and R. Nakamura, J. Am. Chem. Soc., 2012, 134, 1519.