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1. General information

Characterization and spectroscopic instruments

'"H NMR spectra were measured on a Bruker AM-400 spectrometer using d-
chloroform as solvent and tetramethylsilane (TMS, 0 = 0 ppm) as internal standard. The
UV/Vis spectra were measured on a Hitachi (U-3310) spectrophotometer. The
fluorescence spectra were recorded on Edinburgh Instruments Fluorescence
Spectrometer FLS1000 fluorimeter. The accurate values of the viscosity of all samples

were recorded on Rheology Instruments ARES G2.

Synthesis and materials
The initial substances were procured from Energy Chemical and Aladdin and
employed in the experiment without additional refinement. From the commercial

products of n-alkane solvents were purchased from TCI with different viscosities at

25 °C, i.e., Hexane (0.30 mPa-s), Octane (0.51 mPa-s), Decane (0.86 mPa-s), Dodecane

(1.37 mPa-s), Tetradecane (2.10 mPa-s), Hexadecane, (3.10 mPa-s). Six samples of

Mineral Oil Rotational viscosity standards were purchased from Sigma-Aldrich with

different viscosities at 25 °C, i.e., RTM-24 (1.008 Pa-s), RTM-31 (5.738 Pa-s), RTM-

35(10.03 Pas), RTM-37 (19.58 Pa-s), RTM-38 (40.05 Pa-s), and RTM-39 (72.33 Pas).

DPAC-Me and DPAC-CF3 were synthesized according to the reported methods'
without modified. DPAC-Me: '"H NMR (400 MHz, Chloroform-d) § 8.76-8.73 (m, 2H),
8.33-8.32 (d, 1H), 8.08-8.06 (d, 1H), 7.71-7.61 (m, 4H), 7.52-7.48 (t, 1H), 7.30-7.27 (t,
1H), 7.21-7.19 (d, 1H), 6.97-6.90 (m, 6H), 6.74-6.71 (t, 1H), 6.68-6.64 (t, 1H), 6.54-
6.51 (d, 2H), 2.55 (s, 3H). '3*C NMR (101 MHz, Chloroform-d) & 147.80, 147.14,
146.29, 143.25, 139.58, 139.47, 136.86, 130.73, 130.00, 129.58, 129.47, 128.61,
128.56, 127.33, 127.12, 126.88, 126.64, 126.56, 125.97, 124.78, 124.55, 123.07,
123.02, 121.17, 119.57, 117.44, 114.55, 77.36, 77.05, 76.73, 17.70, 0.04. HRMS ESI
(m/z) [M+H]": caled. for C33H25N2, 449.2018; Found, 449.2018. DPAC-CF3: 'H NMR



(400 MHz, Chloroform-d) 6 8.75 (d, 2H), 8.57-8.51 (t, 1H), 8.06 (d, 1H), 7.99 (d, 1H),
7.76 -7.68 (m, 2H), 7.62 (t, 2H), 7.48 (m, 2H), 7.02-6.94 (t, 2H), 6.84 (m, SH), 6.66 (t,
1H), 6.46 (d, 2H). '3C NMR (101 MHz, Chloroform-d) § 150.72, 148.98, 146.05,
141.69, 139.54, 139.25, 130.92, 130.26, 129.74, 129.57, 129.39, 129.09, 128.82,
128.17, 127.74, 126.84, 126.80, 126.47, 124.75, 124.50, 123.22, 122.96, 122.91,
122.76, 122.55, 122.01, 120.45, 119.18, 115.68, 77.35, 77.03, 76.71, 0.02. HRMS ESI
(m/z) [M+H]": calcd. for C33H22N2F3, 503.1735; Found, 503.1746.

The Preparation of mixture solution with viscosity range from 1-1000 cP.

Different volumetric of RTM-24 (1.008 Pa-s) and hexane were added into a vial

(specific values as seen in table S1). Afterwards, the mixture was stirred for 2 hours to

get mixture solution with viscosity range from 1-1000 cP.

Table S1. Volumetric of RTM-24 and hexane, percentage of RTM-24 and viscosity

of mixture solution.

RTM-24 (mL) Hexane (mL) RTM-24 (vol%) Viscosity (cP)
20 0 100 1000
20 0.3 98.5 886
20 0.5 97.5 622
20 1 95 505
18 2 90 290
16 4 80 60
14 6 70 28
12 8 60 6.3
10 10 50 3.6
8 12 40 29
6 14 30 1.9
4 16 20 1.5
2 18 10 1




The Preparation of DPAC-Probes in mixture solution of RTM-24 and hexane.

A standard solution with a concentration of 102 mol/L was created by dissolving
DPAC-Me or DPAC-CF3 in dichloromethane. The concentrated solution (5 uL) was
subsequently transferred to a vial. And then, 5 mL of mixture solution was added into
the vial after the dichloromethane was evaporated completely. The mixture was stirred
at 50 °C for a duration of 2 hours. Subsequently, the freshly prepared solution was

transferred to a cuvette for the necessary experimental analyses.

The Preparation of DPAC-Probes in n-alkane.

A standard solution with a concentration of 102 mol/L was created by dissolving
DPAC-Me or DPAC-CF3 in dichloromethane. The concentrated solution (5 uL) was
subsequently transferred to a vial and evaporated to remove the dichloromethane
completely. Following this, 5 mL of n-alkane was introduced into the vial and the
mixture was stirred at 50 °C for a duration of 2 hours. Subsequently, the freshly prepared

solution was transferred to a cuvette for the necessary experimental analyses

The Preparation of DPAC-Probes in Mineral Oil Rotational Viscosity Standard
(RTM).

A solution of standard concentration at 102 mol/L was prepared by dissolving
DPAC-Me or DPAC-CFs3 in dichloromethane. The concentrated solution (5 uL) was
then transferred to a vial and subjected to evaporation to eliminate the dichloromethane
entirely. Subsequently, 5 mL of Mineral Qil Rotational Viscosity Standard® was added
to the vial, and the mixture was agitated at 50 °C for a period of 2 hours. Following this,
the newly prepared solution was transferred to a cuvette for the required experimental

analyses.

Analysis methodology
The measurement of the quantitative relationship between the Fl ratios and

viscosity is through Forster-Hoffmann equation®:



logl = a + blogn
In the equation, the / value means Fl emission intensity or Fl ratios and the # value
means viscosity, while a and b are constants. According to this equation, plots of log/
as a function of logz should provide a straight line with a slope of b. The value of slope

can evaluate the sensitivity of the two compounds.



2. Photophysical Properties
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Fig. S1 UV-visible absorption of DPAC-Me and DPAC-CF3 in cyclohexane.
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Fig. S2 FL spectra of DPAC-Me and DPAC-CF3 in cyclohexane. The overall quantum
yields (@F) in cyclohexene are determined as 3.4% for DPAC-Me, 0.5% for DPAC-CFs.



a
3
&
[
o
c
]
-]
2
o
73
-1
<
Wavelength (nm)
c d
6x10° -
- 5x10°F
3
< o
4x10°
2
2 o
K] 3%10° -
E 6
2x10° -
T —0h
1x10° 4
—5h
0 . . . .
400 500 600 700 800

Wavelength (nm)

FL Intensity (a.u.)

Absorbance (a.u.)

0.40
0.35
0.30 -
0.25 -
0.20 -
0.15 -
0.10 -
0.05 -
0.00

4x10°

3%10° -

2x10° -

1%10°

N
O

—0h

2 _s5h

300 350 400 450
Wavelength (nm)

—0h

4 _s5h

400 500 600 700 800

Wavelength (nm)

Fig. S3 Absorbance and emission spectra over time for the solutions of (a), (c) DPAC-

Me and (b), (d) DPAC-CF3 in cyclohexane upon irradiation with a 20 W/cm? LED

lamp using continuous range of visible light 385 ~ 740 nm.
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Fig. S4 FL spectra of (a) DPAC-Me and (b) DPAC-CF3 in various n-alkanes.
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Fig. S5 FL spectra of (a) DPAC-Me and (b) DPAC-CF3 in mixture solvent of hexane

and mineral oil from 1-1000 cP.
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rotational viscosity standard viscosity with a viscosity range from 1000 cP to 72330 cP.
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Fig. S7 Forster-Hoffmann plots based on the FL ratio of Ishort/fiong of DPAC-Me with

viscosity from 0.3-3.1 cP.
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Fig. S8 Forster-Hoffmann plots based on the FL ratio of Imidadie/fiong 0f DPAC-CF3 with

viscosity from 0.3-3.1 cP.
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Fig. S9 Forster-Hoffmann plots based on the FL ratio of Lhort/Jiong of DPAC-Me with

viscosity from 1-1000 cP.
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Fig. S11 Forster-Hoffmann plots based on the FL ratio of Isnort/Ziong 0f DPAC-CF3 with

viscosity from 1-1000 cP.
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Fig. S12 Forster-Hoffmann plots based on the FL ratio of Ishort/Imidaie of DPAC-Me with

viscosity from 1000-72330 cP.

0.8
[ ]
—
O 064
=
©
S
-l
18
~
1=l
S 044
i No Weighing
Residal Sumof 000187
Sau
° Pearsonts 099529
0.2 Adj. RSquare 098825
- Value  Standard Error
5 Intercept  -0.69911 0.0603
Skpe 029972 00146
T T T T T
3.0 3.5 4.0 4.5 5.0

log n
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viscosity from 1000-72330 cP.
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3. NMR Spectra
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Fig. S15 '"H NMR spectrum of DPAC-Me (400 MHz, CDCl3-d, ppm)
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Elemental Composition Report Page 1

Single Mass Analysis
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Fig. S18 '"H NMR spectrum of DPAC-CF3 (400 MHz, CDCls-d, ppm)
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Fig. S19 3C NMR spectrum of DPAC-CF3 (400 MHz, CDCls-d, ppm)
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