Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

An Electrochemical Biosensor Based on Glyco-conjugated Cu-BTC MOF for Voltammetric Detection of Bacteria

Deepanshu Bhatt^{1,2}, Deepak Kumar^{1,2}, Abhay Sachdev^{1,2,*}, Akash Deep^{3*}

¹ Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh-160030, India.

² Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India.

³Institute of Nano Science and Technology (INST), Sector-64, Mohali 160062, Punjab, India.

* Corresponding authors: AS: abhay.sachdev@csio.res.in; AD: akashdeep@inst.ac.in

Buffers used in conjugation

- Activation Buffer: 0.1 M MES, 0.5 M NaCl, pH 5.0.
- Coupling Buffer: 0.1 M PBS, pH 7.4.

Eq. S1: Randles-Sevcik equation

$$i_{pa} = 0.4961 \, nFAC \sqrt[2]{\left(\frac{n_{\alpha}F\vartheta D}{RT}\right)}$$

=
$$2.99 \times 10^5 n_{\sqrt{n_{\alpha}}}^2 A C_{\sqrt{D_{\sqrt{\vartheta}}}}^2$$
 (at 25 °C)

Where,

 I_{pa} = Anodic peak current,

 \mathbf{n} = total number of electrons transferred during the redox reaction,

F = Faraday's Constant,

 $\mathbf{A} = \text{Effective surface area},$

 \mathbf{C} = concentration of electroactive species,

 $\mathbf{D} = diffusion coefficient,$

 $\vartheta = \text{scan rate}$

Fig. S1: X-ray diffraction spectra of Cu-BTC, Sugar, and Sugar conjugated Cu-BTC. (**Note:** The sugar used in this study is 4-Aminophenyl-α-D-mannopyranoside (4-APM)).

Fig. S2: Thermal Analysis spectra of sugar conjugated Cu-BTC. (**Note:** The sugar used in this study is 4-Aminophenyl-α-D-mannopyranoside (4-APM)).

Fig. S3 (a and b): Scanning Electron Microscopy images of sugar conjugated Cu₋BTC at different magnifications (500 nm, 1 μ m). (c): Elemental Analysis Data of sugar conjugated Cu-BTC. (Note: The sugar used in this study is 4-Aminophenyl- α -D-mannopyranoside (4-APM)).

Size Distribution by Intensity

Fig. S4: Size distribution profile for Cu-BTC.

Fig. S5: Cyclic Voltammogram of Cu-BTC/SPCE at various pH solutions of 0.1 M PBS Buffer.

Fig. S6: Cyclic Voltammogram (CV) in K₄Fe(CN)₆.3H₂O/KNO₃ in 0.1 M PBS (pH 7.4) electrolyte. (a): Graph showing CV of bare SPCE, activated SPCE, and Cu-BTC at 50 mV/s scan rate, (b): Graph showing CV of Cu-BTC at different scan rates, (c): Graph showing the relationship between the square root of scan rate and oxidation/reduction peak current. O_{1} , R_{1} : Oxidation-Reduction pair of Cu(0)->Cu(I); O_{2} , R_{2} : Oxidation-Reduction pair of Cu(I) ->Cu(II).

Fig. S7 (a and b): The voltammetric response of the bioprobes measured at various time intervals following the incubation with their respective bacterial analytes.

Fig. S8 (a and b): Differential Pulse Voltammetric (DPV) response of 4APM@Cu-BTC and 4APG@Cu-BTC bioprobes as a function of the concentration of ConA and PA-1 lectins, respectively. (**c and d**): Corresponding calibration curves for ConA and PA-1, respectively.

Fig. S9 (a and b): Reproducibility of bioprobes (5 Electrodes, E1-5) under similar conditions.

Table S1: Differential Pulse Voltammetry (DPV) parameters

Potential Window (V)	-0.6 to 0.4
Scan Rate (mV/sec)	50
Amplitude (mV)	100
Pulse (mV)	10
Time of Pulse (msec)	50

Table S2: Analytical performance of as-fabricated bioprobes towards the respective lectins.

Bioprobe	Sensitivity (µA/ng/mL/mm²)	Detection Range	LOD	Analyte
4-APM@Cu-BTC/SPCE	3.32	10 ⁵ to 10 ¹⁰ CFU/mL	2461 CFU/mL	Escherichia coli
4-APM@Cu-BTC/SPCE	3.92	10 to 80 ng/mL	27.05 ng/mL	ConA
4-APG@Cu-BTC/SPCE	2.70	1 to 10 ⁷ CFU/mL	84.68 CFU/mL	Pseudomonas aeruginosa
4-APG@Cu-BTC/SPCE	1.39	10 to 100 ng/mL	30.63 ng/mL	PA-1

Limit of Detection (LOD) = $3.3(\sigma/s)$

Where σ refers to the standard deviation of intercept, and s refers to the slope of the linear curve

 Table S3: Electrochemical biosensing probes utilized for the sensing of *E. coli* and *P. aeruginosa* using monosaccharide sugar as biorecognition element.

Sr.	Bioprobe	Sensing	Limit of	Linear range	Incubation	Ref.
No.		principle	detection		time	

			E. coli			
1.	Mannose@AuN Ps/GCE	Impedance	2 CFU/mL	1.3 x (10 ¹ – 10 ⁶) CFU/mL	60 mins	1
2.	Mannose@Au- electrode	Impedance	2.5 x 10 ³ CFU/mL	1.2 x 10 ² to 2.5 x 10 ³ CFU/mL	30 mins	2
3.	Mannose@LPF G	SPR	10 ³ CFU/mL		1.5 hrs	3
4.	Derivatized- mannose@Au- electrode	SPR	2.5 CFU/mL	2.5 to 2.5 x 10 ⁵ CFU/mL	10 mins	4
5.	Mannose@FeM OF	Photo- luminescence	8 CFU/mL	19 to 19 x 10 ⁶ CFU/mL	5 mins	5
6.	Derivatized- mannose@Auco ated QCM	Piezoelectric	3.7 and 6.6 CFU/mL	10 ³ to 10 ⁶ CFU/mL		6
P. aeruginosa						
7.	Au@SiO ₂ - TCPP-GT	Colorimetric	10 ⁴ CFU/mL		15 mins	7
8.	Galactose@FeM OF	Photo- luminescence	8 CFU/mL	170 to 34 x 10 ⁷ CFU/mL	5mins	5

AuNP = Gold Nanoparticle, FeMOF = Iron Metal Organic Framework, QCM = Quartz Crystal Microbalance, SPR = Surface Plasmon Resonance, GCE = Glassy Carbon Electrode, TCPP = Tris (chloroisopropyl) phosphate, GT = Galactose Tripod, LPFG = Long Period Fiber Grating, CFU = Colony Forming Unit

References

- 1. S. Hargol Zadeh, S. Kashanian and M. Nazari, *Biosensors*, 2023, **13**, 619.
- X. Guo, A. Kulkarni, A. Doepke, H. B. Halsall, S. Iyer and W. R. Heineman, *Analytical chemistry*, 2012, 84, 241-246.
- 3. A. Celebanska, Y. Chiniforooshan, M. Janik, P. Mikulic, B. Sellamuthu, J. Perreault and W. J. Bock, *IEEE Sensors Journal*, 2019, **19**, 11965-11971.
- I. Yazgan, N. M. Noah, O. Toure, S. Zhang and O. A. Sadik, *Biosensors and Bioelectronics*, 2014, 61, 266-273.
- D. Bhatt, S. Singh, N. Singhal, N. Bhardwaj and A. Deep, *Analytical and Bioanalytical Chemistry*, 2023, 415, 659-667.

- 6. G. B. Eshun, H. A. Crapo, I. Yazgan, L. Cronmiller and O. A. Sadik, *Biosensors*, 2023, 13, 337.
- P. Garg, N. Priyadarshi, M. D. Ambule, G. Kaur, S. Kaul, R. Gupta, P. Sagar, G. Bajaj, B. Yadav and V. Rishi, *Nanoscale*, 2023, 15, 15179-15195.