Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Investigation of enzyme and serum protein protective effects, along with molecular docking studies of mixed ligand ruthenium(II) polypyridyl complexes

Sunita Khatkar^a, Santosh Kumar Dubey ^{a*}, Manoj Trivedi^{b*}, Chanchal Vashisth^c, Neeru Devi^a, Neera Raghav^{c*}, Meenakshi Sharma^d, Jagan Rajamoni^e

 ^aDepartment of Chemistry, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra 136119, India Email: santoshkdubey@kuk.ac.in
 ^bDepartment of Chemistry, Daulat Ram College, University of Delhi, Delhi-110007, India Email:manojtrivedi@dr.du.ac.in
 ^cDepartment of Chemistry, Kurukshetra University, Kurukshetra-136119, India
 ^dDr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
 ^cDepartment of Chemistry and Biochemistry, University of Missouri-St. Louis, MO 63121, USA

Content

- 1. NMR data for compounds.
- 2. FTIR Spectra of Compounds.
- 3. Docking data of ligands and complexes with different enzymes.
- 4. IC₅₀ curves of Ru-based complexes and different ligands for the enzyme pepsin, trypsin and lipase.
- 5. Crystallographic data for complex Ru1.

Fig. S1.¹**H NMR** spectrum of $[Ru(\eta^2-N,S-mpy)(\eta^1-S-mpy)(tptz)](Ru1)$ in CDCl₃ at 298K.

Fig. S2. ¹³C NMR spectrum of [Ru (mpy)₂(tptz)](Ru1) in CDCl₃ at 298K.

Fig. S3.¹H NMR spectrum of $[Ru(\eta^2-N,S-mbtz)(\eta^1-S-mbtz)(tptz)]$ (Ru2) in DMSO- d_6 at 298K.

Fig. S4.¹³C NMR spectrum of $[Ru(\eta^2-N,S-mbtz)(\eta^1-S-mbtz)(tptz)]$ (Ru2) in DMSO- d_6 at 298K.

Fig. S5.¹H NMR spectrum of $[Ru(\eta^2-N,S-mpt)(\eta^1-S-mpt)(tpy)]$ (Ru3) in CDCl₃ at 298K.

Fig. S7.¹**H NMR** spectrum of $[Ru(\eta^2-N,S-mbtz)(\eta^1-S-mbtz)(tpy)]$ (**Ru4**) in CDCl₃ at 298K.

Fig. S8.¹³C NMR spectrum of $[Ru(\eta^2-N,S-mbtz)(\eta^1-S-mbtz)(tpy)]$ (Ru4) in CDCl₃ at 298K.

Fig. S9.¹**H NMR** spectrum of $[Ru(\eta^2-N,S-mpy)(\eta^1-S-mpy)(tpy)]$ (**Ru5**) in DMSO-*d*₆ at 298K.

Fig. S10.¹³C NMR spectrum of [Ru(η^2 -N,S-mpy)(η^1 -S-mpy) (tpy)] (Ru5) in DMSO- d_6 at 298K.

Fig. S11. IR spectrum of complexes Ru1-Ru5 at 298K.

Fig. S12. Single helical motif in Ru1 resulting from intermolecular C–H…S interactions.

Fig. S13. Face to Face and Edge to Face π - π stacking interactions in **Ru1**.

 Table S1. Docking data of ligands and complexes with different enzymes.

igand		eractions	eractions	hobic bonds	2D image	3D image		
Lig	Total	VDW	H- bond	Total no. of inte	No. of H-bonds	No. of Hydroph		
Amylase								

МРҮ	-41.5854	-31.1001	-10.4853	3	1	2	ALA A:3	ARG227 ALA3
							ARG A:227	
							Interactions Carbon Hydrogen Bond Pi-Alkyl	
МРТ	-43.1972	-36.1972	-7	5	1	4	TYR A:2 A:230 ARG ARG PRO A:227 PRO A:211	RG227 PRO228 ULEU211 ULEU211 ULEU230

Ru4	-101.462	-98.962	-2.5	13	1	10		
							Alter Alter Alter Alter Alter Alter Deventional Hydrogen Bond Alter Pre-Disultar Alter Pre-Disultar Alter Pre-Disultar Pre-Disultar	ARO227 ALAS TVR2 ULE230
Ru5	-93.6391	-91.1391	-2.5	7	2	5	ARG A.227 ALA ALA A:3 LEU A:211 LEU A:211 ALA A:3 LEU A:211 ALA A:3 LEU A:211 ALA A:3 LEU A:211 ALA A:3 LEU A:211 ALA A:3 LEU A:211 ALA A:3 ALA A:3 LEU A:211 ALA A:3 ALA A ALA A:3 ALA A:3 ALA A ALA A:3 ALA A ALA A ALA A ALA A ALA A ALA A ALA A ALA A ALA A ALA ALA A ALA ALA A AL	ARG227 LEU21 TYR2

МРТ	-45.2622	-35.9828	-9.27941	3	0	3	FRE F	PHE9
MBTZ	-57.3685	-51.0175	-6.35096	3	0	2	Interactions Unfavorable Bump Pr-Suffur	PHEN THRA2 PRO38

Ru1	-92.5807	-88.849	-3.73155	8	1	5	PRO	
							A:38 RET A:72 RET A:72 RET A:72 RET A:72 A:75	AL15 AL15 AL15 AL419 CR029 CR0
							Unfavorable Bump Pi-Sigma Sulfur-X Pi-Sulfur Pi-Donor Hydrogen Bond Pi-Albyl	
Ru2	-96.2066	-83.0782	-13.1284	9	2	5	A:75 A:152 A:296 A:296 A:296 A:296 A:296 A:298 A	PRO239 MET255 ASP 296 PRO152 ASP75

Ru4	-88.1961	-85.8076	-2.38855	13	3	5	Interactions Pr-Sigme Pr-Sulfur Pr-Sigme Pr-Sigme Pr-Sigme	PHE118
Ru5	-80.9755	-73.99	-6.98552	6	0	5	Interactions Unforvorable Bump Sulfur-X	VYSIS PHES PHES BS VYDEA

	Ener gy (Kcal /mol)			tions		onds	2D '	
Ligand	Total	VDW	H- bond	Total no. of interact	No. of H-bonds	No. of Hydrophobic b	2D image	3D image
			1	1		1	Pepsin	·
Curcumin	-98.564	-75.434	-23.129	5	3	2	P:E4 F:B7 0 0	HIS53 HIS53 HIS53 HIS53 HIR67 ALAGG PHEGA

MPY	-40.9173	-37.4173	-3.5	3	1	2	Envertional Hydrogen Bond	PRO10
MPT	-44.8596	-37.8596	-7	3	1	2	PRO B:57 B:57 B:50 B:10 B:10 B:10 B:10 B:10 B:10 B:10 B:1	PRO10 PRO10 UNITED

MBTZ	-52.1587	-48.6587	-3.5	4	0	4	ALA B:56 PRO B:10 PRO B:57 B:57	PRO10 PRO10 PRO57 PRO57
TPY	-85.0769	-74.7123	-10.364	7	0	7	PRO B:62 B:62 B:60 B:57 B:59 B:59 B:59 B:59 B:59 B:59 B:59 B:59	PRO10

Ru3	-90.9276	-78.7789	-12.1487	5	0	5		
							A:67	
							PRO B:10	TYRAG
							S BIS	
								меть
							MET	HR67
							TYR B:45	- Care
							Interactions	
							Unfavorable Bump Alkyl Pi-Sigma Pi-Alkyl	
Ru4	-88.998	-85.498	-3.5	13	0	13		
-						_	HR THR	
								LE12
								HR49
							PRO B:10	
							BEQ CVS	CYS48 TYRBS PP010
							B:48 MET A:86	ETT YOU
							Interactions	PRO
							Unfavorable Bump Pi-Sulfur Carbon Hydrogen Bond Allyl	ATHR67
							Pi-Sigma Pi-Alkyl	

gand	Energy (Kcal/mol)			f interactions		10bic bonds	2D image	3D image
Lis	Total	VDW	H- bond	Total no. of	No. of H-bonds	No. of Hydroph	Trypsin	
Curcumin	-106.636	-86.6059	-20.03	6	5	1	ATT	

МРУ	-43.4387	-36.4387	-7	2	1	1	GLN B:163 LEU A:89 Interactions Interactions Conventional Hydrogen Bond	CLN163
МРТ	-44.3987	-37.3996	-6.9991	5	2	1	Interactions Carbon Hydrogen Bond PI-Donor Hydrogen Bond	CC-CC-CC-CC-CC-CC-CC-CC-CC-CC-CC-CC-CC-

Ru2	-109.9	-104.454	-5.44594	7	3	4	GLN B:163 GLN GLN GLN GLN GLN GLN GLN GLN GLN GLN	THRES CLEUSS CLEUSS CLY204 CLY204 CLY204
Ru3	-92.8516	-85.0167	-7.83485	2	0	2	LEU Alkyl	TRP201

Table S2. IC₅₀ curves of Ru-based complexes and different ligands for the enzyme pepsin, trypsin and lipase.

 Table S3.
 Crystallographic data for the complex Ru1.

Empirical formula	$C_{28}H_{20}N_8RuS_2$		
Formula weight	633.71		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	<i>P</i> 2 ₁ /n		
Unit cell dimensions	a = 17.4346(3) Å	a= 90°.	
	b = 8.91820(10) Å	b=105.318(2)°.	
	c = 17.5800(2) Å	g = 90°.	
Volume	2636.32(7) Å ³		
Z	4		
Density (calculated)	1.597 Mg/m ³		
Absorption coefficient	0.788 mm ⁻¹		
F(000)	1280		
Crystal size	0.3 x 0.15 x 0.1 mm ³		
Theta range for data collection	1.918 to 25.500°.		
Index ranges	-21<=h<=21, -10<=k<=10, -	-21<=1<=21	
Reflections collected	38260		
Completeness to theta = 25.242°	100.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.0000 and 0.9033		
Refinement method	Full-matrix least-squares on	F ²	
Data / restraints / parameters	4903 / 0 / 352		

Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole

1.085 R1 = 0.0261, wR2 = 0.0687 R1 = 0.0309, wR2 = 0.0711 0.710 and -0.354 e.Å⁻³ **Table S4.** Stability of complexes.

Sample	Sample Code	%Pepsin Inhibition at					
		0 week	1 st week	2 nd week	3 rd week		
Control	Curcumin	60.40±1.2	59.40±1.9	60.40±1.6	61.40±2.2		
	Orlistat	-	-	-	-		
	MPY	25.66±0.8	24.56±1.4	26.75±0.9	25.12±1.8		
	МРТ	29.24±1.4	27.24±1.1	29.74±1.4	28.14±1.6		
	MBTZ	35.62±2.1	33.62±2.0	34.12±1.5	35.74±2.4		
	TPY	49.62±1.6	47.62±1.4	47.22±0.9	49.62±1.4		
	TPTZ	62.21±2.4	60.21±2.1	61.41±1.6	62.21±2.6		
	Ru1	69.46±2.0	67.46±2.4	68.56±1.4	68.46±2.1		
	Ru2	64.28±1.8	62.28±1.7	63.22±1.2	65.78±1.8		
	Ru3	58.64±0.6	57.64±1.5	56.28±2.4	59.74±0.4		
	Ru4	55.26±1.1	54.86±1.4	53.24±1.2	55.26±1.4		
	Ru5	53.26±2.0	53.18±2.2	51.44±1.4	53.26±2.2		

Sample	Sample Code	% Trypsin Inhibition at			
		1x10 ⁻⁶ M			
		0 week	1 st week	2 nd week	3 rd week
Control	Curcumin	49.11±2.0	48.74±2.2	47.24±2.1	50.64±2.1
	Orlistat	-	-	-	-
	MPY	32.86±1.4	32.56±1.1	31.86±1.9	30.24±1.5
	МРТ	36.24±1.1	37.14±1.4	35.24±1.4	34.84±1.5
	MBTZ	43.56±1.8	41.56±1.6	42.76±1.9	44.76±1.7
	TPY	53.42±1.6	54.52±1.7	52.72±1.5	51.52±1.5
	TPTZ	60.15±2.1	61.45±2.4	61.75±2.4	59.75±2.2
	Ru1	63.38±0.6	63.28±0.8	62.38±1.8	61.37±1.8
	Ru2	68.20±1.4	67.16±1.6	66.46±1.6	69.88±1.4
	Ru3	57.48±2.0	57.38±2.4	56.68±2.4	58.68±2.2
	Ru4	57.28±1.8	58.17±2.0	56.47±1.4	59.47±1.2
	Ru5	51.46±0.6	51.28±1.6	50.78±1.8	52.47±1.4

Sample	Sample Code		%L	ipase inhibition		
				at 1x10 ⁻⁶ M		
		0 week	1 st week	2 nd week	3 rd week	
Control	Curcumin			-		
	Orlistat	66.45±1.0	65.14±1.7	64.15±2.0	64.11±1.1	
	MPY	28.32±1.2	27.13±1.1	26.22±1.9	28.34±1.4	
	МРТ	27.76±0.5	26.17±0.8	25.16±0.8	27.70±1.5	
	MBTZ	34.68±1.8	33.18±1.6	32.61±1.7	34.80±2.8	
	TPY	53.52±1.4	52.12±1.2	51.55±1.6	53.05±1.6	
	TPTZ	71.26±0.8	70.16±0.9	70.27±0.5	71.20±1.8	
	Ru1	68.72±1.6	67.12±1.1	66.44±1.4	68.64±1.7	
	Ru2	70.36±0.7	69.16±0.4	68.55±0.9	70.16±1.6	
	Ru3	57.26±1.5	56.16±1.6	55.27±1.3	57.18±1.2	
	Ru4	67.26±2.1	66.16±2.8	65.15±2.2	67.45±2.0	
	Ru5	51.62±1.8	50.12±1.5	49.16±1.1	51.50±1.1	

Sample	Sample Code	%α-amylase activation at 1x10 ⁻⁵ M

		0 week	1 st week	2 nd week	3 rd week
Control	Curcumin	24 25+1 2	23 05+1 4	22 25+1 8	26 23+1 1
Control	Curtumin	21.23-1.2	25.05-1.1	22.23-1.0	20.23-1.1
	Orlistat	-	-	-	-
	MPY	16.76±2.6	15.26±2.0	17.44±2.4	18.36±2.2
	MPT	19.42±1.9	20.82±1.4	18.25±1.0	20.17±1.3
	MBTZ	28.42±2.6	29.32±2.4	27.28±2.0	30.12±2.4
	TPY	34.76±1.7	35.26±1.6	33.16±1.6	36.18±1.5
	TPTZ	42.86±2.3	41.66±2.1	40.22±2.2	44.69±2.6
	Ru1	64.75±1.1	65.35±1.8	62.25±1.6	66.50±1.7
	Ru2	58.26±1.8	59.46±1.7	56.16±1.4	60.12±1.8
	Ru3	57.84±2.7	58.22±2.1	56.47±2.6	60.47±2.0
	Ru4	55.78±1.5	54.36±1.2	53.18±1.4	57.45±1.4
	Ru5	48.64±1.2	47.24±1.0	46.28±1.1	49.44±1.1

Compounds	Solubility (g/L)	
Omeprazole	56	
Pantoprazole	30	
Curcumin	74	
Orlistat	19	
Ru1	333	
Ru2	142	
Ru3	249	
Ru4	198	
Ru5	166.6	
Тру	55.55	
Mpt	45.4	
Mbtz	98	
Tbtz	62.5	
тру	97	