Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting Information for

Modular Synthesis of Glycosyl Sulfonamide via Reductive Coupling of Glycosyl Sulfinate and Nitroarene

Wenxu Zhen,^a Jialu Ma,^a Zhaohui Ni,^a Jiaxin Luo,^a Xiaomin Shen^a Yusheng Xie,^c Hao Qiu^{*,d} and Chunfa Xu^{a,b,*}

xucf@fzu.edu.cn

Content

1. General information	3
2. General procedure for optimization (Procedure A) (see Table S1 to S6)	4
3. General procedure for synthesis of Glycosylsulfonamide (Procedure B)	7
4. General procedure for synthesis of Glycosylsulfonamide (Procedure C)	7
5. Mechanistic studies and proposed mechanism	8
6. General procedure for debenzylation (Procedure D)	10
7. Library of glycosyl sulfinates	10
8. Experimental characterization data	12
9. NMR Spectra	26
10. References	55

1. General information

Unless otherwise stated, all reactions were set up under inert atmosphere (N_2) utilizing glassware that were oven dried and cooled under nitrogen purging. Silica Gel Flash Column Chromatography was performed on deactivated silica gel (particle size 300-400 mesh). Starting materials were purchased directly from commercial suppliers (Sigma Aldrich, Energy Chemical, Bidepharm, Tansoole) and used without further purifications unless otherwise stated. All solvents were dried according to standard procedures or brought from commercial suppliers. Reactions were monitored using thin-layer chromatography (TLC) with F254 indicator. Visualization of the developed plates was performed under UV light (254 nm) or H₂SO₄-EtOH (10% H₂SO₄ v/v).

¹H NMR, ¹³C NMR were recorded using Bruker AVIII 400 spectrometer. ¹H NMR and ¹³C NMR chemical shifts were reported in parts per million (ppm) downfield from tetramethylsilane. Because of the special structure of sugar, the ¹³C NMR chemical shifts retain two decimal places. Coupling constants (*J*) are reported in Hertz (Hz). The residual solvent peak was used as an internal reference: ¹H NMR (CDCl₃ δ 7.26 ppm), ¹³C NMR (CDCl₃ δ 77.16 ppm), ¹H NMR (DMSO-*d*₆ δ 2.50 ppm), ¹³C NMR (CD3OD δ 4.87 ppm), ¹³C NMR (CD₃OD δ 49.00 ppm). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. HRMS data was recorded using HRMR Exactive Plus instrument. Melting point was measured using SGW X-4A instrument.

2. General procedure for optimization (Procedure A) (see Table S1 to S6)

In a glove box filled with nitrogen, to an oven-dried 10 mL tube equipped with a stirring bar were added **1a** (0.075 mmol, 1.5 equiv.), **2a** (0.05 mmol, 1.0 equiv.), reductant, solvent (1 mL), catalyst and ligand. The tube was sealed with a Teflon screw cap and the mixture was stirred at dedicated temperature. Upon completion, the yield was determined by ¹H NMR spectroscopy analysis using 1,3,5-trimethoxybenzene as an internal standard.

Table S1: Effect of Ligand

^aReaction conditions: **1a** (0.075 mmol, 1.5 equiv.), **2a** (0.05 mmol, 1.0 equiv.), NaHSO₃ (0.15 mmol, 3.0 equiv.) DMSO (1 mL), FeCl₂ (0.01 mmol, 20 mol%), Ligand (0.01 mmol, 20 mol%), under N₂ atmosphere, 4 h, 60 °C; ^bYields were determined by ¹H NMR spectroscopy analysis using 1,3,5-trimethoxybenzene as an internal standard.

Table S2: Effect of catalyst

$B_{\text{BnO}} \xrightarrow{OBn}_{\text{BnO}} \xrightarrow{O}_{\text{BnO}} \xrightarrow{S}_{\text{ONa}} \xrightarrow{+}_{\text{F}} \xrightarrow{NO_2}_{\text{F}}$	NaHSO ₃ (3.0 equiv.), catalyst (20 mol%) ► BINAP (20 mol%), DMSO, 60 ℃, N ₂ , 4 h	BnO BnO S N H F
Entry	Catalyst	Yield (%) ^b
1	FeF3	64
2	Fe(acac) ₃	84
3	Fe(OTf) ₃	91
4	FeCl ₃	78
5	FePc	63
6	Fe(OAc) ₂	85
7	Fe(NO ₃) ₃ ·9H ₂ O	81
8	FePO ₄	47
9	FeBr ₂	74
10	CuCl	60 ^c

^aReaction conditions: **1a** (0.075 mmol, 1.5 equiv.), **2a** (0.05 mmol, 1.0 equiv.), NaHSO₃ (0.15 mmol, 3.0 equiv.) DMSO (1 mL), catalyst (0.01 mmol, 20 mol%), BINAP (0.01 mmol, 20 mol%), under N₂ atmosphere, 4 h, 60 °C; ^bYields were determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. ^c Isolated yield. FePc = Iron phthalocyanine.

Table S3: Effect of reductant

BnO BnO BnO BnO BnO BnO BnO S ONa ta		+ F 2a	Reductant (3.0 equiv.), $Fe(OTf)_3$ BINAP (20 mol%), DMSO, 60 $^{\circ}C$,	(20 mol%) $(20 mol%)$ $(20 mol%)$ BnO BnO BnO BnO S H $3a$	F
	Entry		Reductant	Yield (%) ^b	
	1		NaBH ₃ CN	n.d.	
	2		NaBH ₄	n.d.	
	3		KBH4	n.d.	
	4		(i-Bu) ₂ AlH	n.d.	
	5		NaHS	n.d.	
	6		(CH ₃ CH ₂) ₃ SiH	n.d.	

^aReaction conditions: **1a** (0.075 mmol, 1.5 equiv.), **2a** (0.05 mmol, 1.0 equiv.), Reductant (0.15 mmol, 3.0 equiv.) DMSO (1 mL), Fe(OTf)₃ (0.01 mmol, 20 mol%), BINAP (0.01 mmol, 20 mol%), under N₂ atmosphere, 4 h, 60 °C; ^bYields were determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. n.d. = not determined.

Table S4: Effect of solvent

BnO = F = F = F = F = F = F = F = F = F =	NaHSO ₃ (3.0 equiv.), Fe(OTf) ₃ (20 mol%) BINAP (20 mol%), Solvent, 60 ℃, N ₂ , 4 h	BnO BnO BnO BnO BnO BnO BnO BnO BnO S BnO S BnO S BnO S BnO S S BnO S S BnO S S S S S S S S S S S S S S S S S S S
Entry	Solvent	Yield (%) ^b
1	DMF	15
2	DMA	trace
3	THF	n.d.
4	CH ₃ CN	trace
5	СН ₃ ОН	trace
6	toluene	n.d.
7	CH ₂ Cl ₂	n.d.
8	EtOAc	trace

^aReaction conditions: **1a** (0.075 mmol, 1.5 equiv.), **2a** (0.05 mmol, 1.0 equiv.), NaHSO₃ (0.15 mmol, 3.0 equiv.) solvent (1 mL), Fe(OTf)₃ (0.01 mmol, 20 mol%), BINAP (0.01 mmol, 20 mol%), under N₂ atmosphere, 4 h, 60 °C; ^bYields were determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. n.d. = not determined.

Table S5: Effect of temperature

BnO BnO BnO 1a Entry	$ \begin{array}{c} OBn \\ O \\ BnO \end{array} $ $ \begin{array}{c} NO_2 \\ F \\ F \\ 1a \end{array} $ $ \begin{array}{c} NO_2 \\ F \\ F \\ 2a \end{array} $	NaHSO ₃ (3.0 equiv.), Fe(OTf) ₃ (20 mol%) BINAP (20 mol%), DMSO,Temp., N ₂ , 4 h	BnO BnO BnO S N H F
	Entry	Temp.(℃)	Yield (%) ^b
	1	40	56
	2	80	78
	3	100	30

^aReaction conditions: **1a** (0.075 mmol, 1.5 equiv.), **2a** (0.05 mmol, 1.0 equiv.), NaHSO₃ (0.15 mmol, 3.0 equiv.) DMSO (1 mL), Fe(OTf)₃ (0.01 mmol, 20 mol%), BINAP (0.01 mmol, 20 mol%), under N₂ atmosphere, 4 h; ^bYields were determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.

Table S6: Control experiments

BnO BnO	OBn O S BnO Ia	+ F 2a	NaHSO ₃ (3.0 equiv.), Fe(OTf) ₃ (BINAP (20 mol%), DMSO, 60 °C	$\begin{array}{c} 20 \text{ mol\%} \\ \hline C, N_2, 4 \text{ h} \end{array} \qquad \begin{array}{c} BnO \\ BnO \\ BnO \\ BnO \\ \end{array} \begin{array}{c} OBn \\ S \\ BnO \\ BnO \\ \end{array} \begin{array}{c} OBn \\ S \\ N \\ H \end{array}$	F
	Entry		Variation from standard conditions	Yield (%) ^b	
	1		1a:2a (1:1.2)	85	
	2		BINAP (10)	67	
	3		Fe(OTf) ₃ (10)	66	
	4		NaHSO ₃ (1.0 equiv.)	71	
	5		No BINAP	75	
	6		No Fe(OTf) ₃	31	
	7		No NaHSO ₃	n.d.	
	8		Air conditions	68	

^aReaction conditions: **1a** (0.075 mmol, 1.5 equiv.), **2a** (0.05 mmol, 1.0 equiv.), NaHSO₃ (0.15 mmol, 3.0 equiv.) DMSO (1 mL), Fe(OTf)₃ (0.01 mmol, 20 mol%), BINAP (0.01 mmol, 20 mol%), under N₂ atmosphere, 4 h, 60 °C; ^byield were determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. n.d. = not determined.

3. General procedure for synthesis of glycosyl sulfonamide (Procedure B)

In a glove box filled with nitrogen, to an oven-dried 10 mL tube equipped with a stirring bar were added 1 (0.15 mmol, 1.5 equiv.), 2 (0.1 mmol, 1.0 equiv.), NaHSO₃ (0.3 mmol, 3.0 equiv.), DMSO (1 mL), Fe(OTf)₃(0.02 mmol, 20 mol%), BINAP (0.02 mmol, 20 mol%). The tube was sealed with a Teflon screw cap and the mixture was stirred at 60 °C for 4 h. Upon completion, the reaction was extracted with ethyl acetate (3 times). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. And the residue was purified by silica gel chromatography to give the desired glycosylsulfonamide.

4. General procedure for synthesis of glycosyl sulfonamide (Procedure C)

In a glove box filled with nitrogen, to an oven-dried 10 mL tube equipped with a stirring bar were

added 1 (0.15 mmol, 1.5 equiv.), 2 (0.1 mmol, 1.0 equiv.), NaHSO₃ (0.3 mmol, 3.0 equiv.), DMSO (1 mL), Fe(OTf)₃ (0.02 mmol, 20 mol%), BINAP (0.02 mmol, 20 mol%). The tube was sealed with a Teflon screw cap and the mixture was heated with microwave irradiation at 80 °C for 4 h. Upon completion, the reaction was extracted with ethyl acetate (3 times). The combined organic layers were dried over Na_2SO_4 and concentrated under reduced pressure. And the residue was purified by silica gel chromatography to give the desired glycosylsulfonamide.

5. Mechanistic studies and proposed mechanism

5.1 Reaction of 1a with N-phenylhydroxylamine

BnO BnO BnO BnO Ia	Bn O S ONa +	NHOH <u>NaHSO₃, Fe(</u> DMSO, 80 5	<u>OTf)₃, BINAP</u> Bn ^t °C, 24 h, N ₂ B	ODD ODD S N BNO S N 3i
Entry	NaHSO ₃ (equiv.)	Fe(OTf) ₃ (mol%)	BINAP (mol%)	Yield (%) ^b
1	20	20	20	12
2	20	none	none	n.d.

In a glove box filled with nitrogen, to an oven-dried 10 mL tube equipped with a stirring bar were added **1a** (0.075 mmol, 1.5 equiv.), **5** (0.05 mmol, 1.0 equiv.), NaHSO₃ (0.15~1 mmol, 3.0~20 equiv.), DMSO (1 mL), Fe(OTf)₃ (0.01 mmol, 20 mol%), BINAP (0.01 mmol, 20 mol%). The tube was sealed with a Teflon screw cap and the mixture was stirred at 80 °C for 24 h. Upon completion, the reaction was extracted with ethyl acetate (3 times). The combined organic layers were dried over Na_2SO_4 and concentrated under reduced pressure. And the residue was purified by silica gel chromatography to give the desired glycosylsulfonamide.

5.2. Reaction of 1a with nitrosobenzene

In a glove box filled with nitrogen, to an oven-dried 10 mL tube equipped with a stirring bar were added **1a** (0.075 mmol, 1.5 equiv.), **6** (0.05 mmol, 1.0 equiv.), NaHSO₃ (0.15 mmol, 3.0 equiv.), DMSO (1 mL), Fe(OTf)₃ (0.01 mmol, 20 mol%), BINAP (0.01 mmol, 20 mol%). The tube was sealed with a Teflon screw cap and the mixture was stirred at 80 °C for 24 h.

5.3. Reaction of 1a with aniline

In a glove box filled with nitrogen, to an oven-dried 10 mL tube equipped with a stirring bar were added **1a** (0.075 mmol, 1.5 equiv.), **7** (0.05 mmol, 1.0 equiv.), NaHSO₃ (0.15 mmol, 3.0 equiv.), DMSO (1 mL), Fe(OTf)₃ (0.01 mmol, 20 mol%), BINAP (0.01 mmol, 20 mol%). The tube was sealed with a Teflon screw cap and the mixture was stirred at 80 °C for 24 h.

5.4. Proposed mechanism

Based on the amalgamation of experimental results and the reported findings^{1, 2}, there are two possible pathways for the synthesis of glycosyl sulfonamide. In path a, initially, there is an electrostatic interaction between glycosyl sulfinate and the iron complex, forming the intermediate **A**. This interaction is crucial as the iron complex likely acts as a Lewis acid, facilitating the subsequent nucleophilic attack on the nitro group. As a result, a five membered intermediate **B** is formed. This intermediate is then reduced by NaHSO₃, resulting in the formation of **D**, along with the regeneration of the iron catalyst. Further reduction of **D** by NaHSO₃ afforded the desired glycosyl sulfonamide **3**. Alternatively, in path b, the nitroarene is directly reduced to *N*-phenylhydroxylamine, which is subsequently further converted to the final product promoted by iron catalyst.

Figure S1. Plausible Mechanism

6. General procedure for debenzylation (Procedure D)

A suspension of **3a** (69.7 mg, 0.01 mmol) and Pd/C (5%, 86 mg) in MeOH/THF (1:1, 2 mL) was stirred at RT under hydrogen gas for 8 h. The combination was filtered via Celite, then concentrated to give a residue. The residue was purified by silica gel column chromatography (CH₂Cl₂/CH₃OH, 10:1) to give the compound **4**.³

7. Library of glycosyl sulfinates

Figure S2. Library of glycosyl sulfinates

General procedure for synthesis of glycosyl sulfinate (Procedure E)

Figure S3. Synthetic route of glycosyl sulfinate

Step 1: Synthesis of glycosyl bromide

Sugar substrate (1.0 equiv.) and sodium acetate (1.1 equiv.) were dissolved in acetic anhydride (0.6 M). The reaction mixture was heated to 90°C and stirred for 5 hours. Then the mixture was poured into cold water. The water layer was extracted with CH_2Cl_2 (3 times). The combined organic layers were washed with saturated NaHCO₃, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was obtained and used directly without further purification. Crude acetylated glycoside was dissolved in CH_2Cl_2 (0.5 M) at 0 °C. Then, HBr (30% acetic acid solution, 4.5 equiv..) was slowly added and the resulting mixture was stirred at room temperature for 12 hours. Upon completion, the mixture was poured into ice water and extracted with CH_2Cl_2 (3 times). The combined organic layers were washed with saturated NaHCO₃, dried with Na₂SO₄, and concentrated under rotary evaporator. The residue was obtained and used directly without further purification.

Step 2: Reaction with 2-thiopyrimidine

Under nitrogen atmosphere, 2-thiopyrimidine (1.5 equiv.), potassium carbonate (8.0 equiv.) and DMF (0.3 M) were added to a reaction flask and the mixture was stirred at 40 °C for 30 minutes. Afterwards, a DMF solution of acetylated glycosyl bromide (1.0 equiv.) was added to a reaction flask and stirred for another 12 hours. Upon completion, the reaction was quenched with water and extracted with CH_2Cl_2 (3 times). The combined organic layers were dried over Na_2SO_4 and concentrated under reduced pressure. And the residue was purified by silica gel chromatography to give the desired thioglycoside.

Step 3: Benzylation

Sodium methoxide (0.2 equiv.) and acetylated thioglycoside (1.0 equiv.) (Obtained from step 2) were dissolved in methanol (0.25 M), and the mixture was stirred at room temperature for 2 hours. Upon completion, the mixture was concentrated under reduced pressure and further dried under vacuum. Then, the residue was dissolved in DMF (0.25 M) at 0 °C, and NaH (8.0 equiv.) was added in batches. Afterwards, benzyl bromide (8.0 equiv.) was added dropwise at same temperature, and the reaction was allowed to warm up to room temperature (25 °C) and stirred for 12 hours. The reaction was then quenched by water and extracted with CH_2Cl_2 (3 times). The combined organic layers were washed with water (3 times), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel chromatography to give the benzylated thioglycoside.

Step 4: Oxidation

m-CPBA (3.0 equiv.) in a round bottom flask was dried under vacuum. To the flask was added a CH_2Cl_2 (0.05 M) solution of acetylated thioglycoside (1.0 equiv.) (Obtained from step 2) at 0 °C. The temperature was warmed to room temperature. After stirring for 4 hours, the reaction mixture was treated with 1 M Na₂SO₃ and saturated aqueous NaHSO₃ at room temperature. The organic phase was separated and the aqueous layer was extracted with CH_2Cl_2 . The combined organic layers were dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography eluent: hexane/EtOAc = 1:2 to give the sulfone product.

Step 5: Removal of pyrimidine moiety

Under nitrogen atmosphere, NaH (3.0 equiv.) was dissolved in THF (0.5M) at 0 °C, and BnSH (0.3 - 1.0 equiv.) was added dropwise. After that, a THF solution of sulfone product (Obtained from step 4) was added and the resulting mixture was stirred at 0 °C for 2 hours and then warmed up to room temperature for several hours until completion of sugar substrate. Afterwards, the mixture was concentrated under reduced pressure. The resulting residue was washed with petroleum ether and ethyl acetate, and dried under vacuum to give the sodium glycosyl sulfinate.

Compounds 1a-1e were synthesized according to the literature.⁴

8. Experimental characterization data

(2*S*,3*R*,4*S*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)-N-(3-fluorophenyl)tetrahydro-2*H*-p yran-2-sulfonamide (3a)

3a was synthesized according to the general procedure B and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a white solid (63.4 mg, 91% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.36-7.19 (m, 18H), 7.13-7.07 (m, 2H), 6.97 (d, J = 10.1 Hz, 1H), 6.90 (d, J = 8.0 Hz, 1H), 6.81 (t, J = 8.3 Hz, 2H), 4.88 (t, J = 9.9 Hz, 2H), 4.82-4.71 (m, 3H), 4.51-4.43 (m, 3H), 4.18 (d, J = 9.4 Hz, 1H), 3.97 (t, J = 9.1 Hz, 1H), 3.68 – 3.50 (m, 4H), 3.37-3.41 (m, 1H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ 163.05 (d, J = 246.8 Hz), 138.20, 137.94 (d, J = 10.3 Hz), 137.76, 137.43, 130.45 (d, J = 9.2 Hz), 128.86, 128.65, 128.61, 128.58, 128.25, 128.13, 128.07, 128.06, 127.92, 127.75, 118.54 (d, J = 3.0 Hz), 112.89 (d, J = 21.2 Hz), 110.44 (d, J = 24.9 Hz), 87.46, 86.12, 79.56, 78.56, 77.37, 75.93, 75.79, 75.20, 73.55, 68.72 ppm.

 $[\alpha]_D^{25} = +2.1$ (c = 0.25, CHCl₃).

HRMS (ESI-TOF): calculated for C₄₀H₄₀FNO₇SNa⁺ [M+Na⁺]: 720.2401, found: 720.2380.

(2*S*,3*R*,4*S*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)-N-(3-bromophenyl)tetrahydro-2*H*-pyran-2-sulfonamide (3b)

3b was synthesized according to the general procedure B and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a white solid (63.6 mg, 84% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.38-7.22 (m, 20H), 7.18-7.13 (m, 3H), 7.01 (t, *J* = 8.0 Hz, 1H), 6.77 (s, 1H), 4.92-4.87 (m, 2H), 4.85-4.78 (m, 3H), 4.58-4.49 (m, 3H), 4.17 (d, *J* = 9.3 Hz, 1H), 3.98 (t, *J* = 9.2 Hz, 1H), 3.68-3.59 (m, 3H), 3.55 (t, *J* = 9.4 Hz, 1H), 3.45-3.41 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 138.07, 137.62, 137.30, 130.47, 129.02, 128.72, 128.55, 128.50, 128.47, 128.20, 128.14, 128.06, 127.96, 127.81, 127.65, 125.96, 122.64, 121.70, 87.33, 85.99, 79.44, 78.45, 77.23, 75.81, 75.67, 75.11, 73.45, 68.46 ppm.

 $[\alpha]_D^{25} = +2.9 (c = 0.25, CHCl_3).$

HRMS (ESI-TOF): calculated for $C_{40}H_{40}BrNO_7SNa^+$ [M+Na⁺]: 780.1601, found 780.1589.

(2*S*,3*R*,4*S*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)-N-(2-bromophenyl)tetrahydro-2*H*-pyran-2-sulfonamide (3c)

3c was synthesized according to the general procedure B and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a white solid (39.3 mg, 52% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.2 Hz, 1H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.41-7.19 (m, 18H), 7.14-7.12 (m, 2H), 7.02 (s, 1H), 6.97 (t, *J* = 7.7 Hz, 1H), 4.95-4.85 (m, 2H), 4.84 (d, *J* = 11.0 Hz, 1H), 4.77 (d, *J* = 10.2 Hz, 2H), 4.57 (d, *J* = 10.8 Hz, 1H), 4.49-4.30 (m, 3H), 4.02 (t, *J* = 9.0 Hz, 1H), 3.81-3.64 (m, 3H), 3.58 (d, *J* = 1.7 Hz, 1H), 3.40-3.33 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 138.63, 138.40, 138.33, 137.82, 135.80, 133.07, 129.19, 129.02, 128.92, 128.88, 128.85, 128.46, 128.32, 128.27, 128.24, 128.19, 128.07, 126.53, 122.55, 89.91, 86.48, 80.31, 78.75, 77.28, 76.29, 76.09, 75.51, 73.93, 68.56 ppm.

 $[\alpha]_D^{25} = +2.7 (c = 0.14, CHCl_3).$

HRMS (ESI-TOF): calculated for $C_{40}H_{40}BrNO_7SNa^+$ [M+Na⁺]: 780.1601, found: 780.1578.

(2*S*,3*R*,4*S*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)-N-(4-bromophenyl)tetrahydro-2*H*-pyran-2-sulfonamide (3d)

3d was synthesized according to the general procedure B and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a white solid (59 mg, 78% yield).

¹**H NMR** (400 MHz,CDCl₃) δ 7.45-7.22 (m, 20H), 7.18-7.16 (m, 2H), 7.07 (d, *J* = 8.5 Hz, 2H), 6.67 (s, 1H), 4.94-4.90 (m, 2H), 4.86-4.73 (m, 3H), 4.59-4.47 (m, 3H), 4.17 (d, *J* = 9.4 Hz, 1H), 4.00 (t, *J* = 9.1 Hz, 1H), 3.71-3.61 (m, 3H), 3.55 (t, *J* = 9.3 Hz, 1H), 3.45-3.42 (m,1H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 138.18, 137.75, 137.45, 135.42, 132.34, 128.78, 128.67, 128.59, 128.23, 128.19, 128.07, 128.04, 127.90, 127.74, 124.96, 119.42, 87.42, 86.10, 79.54, 78.54, 77.36, 75.91, 75.70, 75.17, 73.63, 68.96 ppm.

 $[\alpha]_{D}^{25} = +1.4$ (c = 0.12, CHCl₃).

HRMS (ESI-TOF): calculated for $C_{40}H_{40}BrNO_7SNa^+$ [M+Na⁺]: 780.1601, found: 780.1587.

(2*S*,3*R*,4*S*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)-N-(4-chlorophenyl)tetrahydro-2*H*-pyran-2-sulfonamide (3e)

3e was synthesized according to the general procedure B and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a white solid (48.4 mg, 68% yield).

¹**H NMR** (400 MHz,CDCl₃) δ 7.41-7.25 (m, 18H), 7.20-7.15 (m, 4H), 7.11 (t, *J* = 9.1 Hz, 2H), 6.71 (s, 1H), 4.94-4.92 (m, 2H), 4.86-4.73 (m, 3H), 4.57-4.49 (m, *J* = 17.8 Hz, 3H), 4.17 (d, *J* = 9.4 Hz, 1H), 4.00 (t, *J* = 9.1 Hz, 1H), 3.72-3.60 (m, 3H), 3.55 (t, *J* = 9.3 Hz, 1H), 3.49-3.41 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 138.21, 137.80, 137.78, 137.48, 134.80, 131.82, 129.42, 128.82, 128.70, 128.63, 128.26, 128.23, 128.11, 128.07, 127.94, 127.78, 124.85, 87.28, 86.15, 79.63, 78.59, 77.43, 75.95, 75.75, 75.22, 73.68, 69.05 ppm.

 $[\alpha]_{D}^{25} = -2.7 (c = 0.14, CHCl_3).$

HRMS (ESI-TOF): calculated for $C_{40}H_{40}ClNO_7SNa^+$ [M+Na⁺]: 736.2106, found: 736.2108.

(2*S*,3*R*,4*S*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)-N-(3-iodophenyl)tetrahydro-2*H*-pyran-2-sulfonamide (3f)

3f was synthesized according to the general procedure B and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a Colorless oil (62 mg, 77% yield).

¹**H NMR** (500 MHz,CDCl₃) δ 7.47-7.45 (m, 2H), 7.40-7.19 (m, 19H), 7.12-7.10 (m, 2H), 6.86 (s, 1H), 6.60 (s, 1H), 4.90-4.87 (m, 2H), 4.85-4.71 (m, 3H), 4.62-4.42 (m, 3H), 4.14 (d, *J* = 9.5 Hz, 1H), 3.96 (t, *J* = 9.1 Hz, 1H), 3.66-3.61 (m, 3H), 3.55 (t, *J* = 9.4 Hz, 1H), 3.41-3.39 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 138.56, 138.19, 138.11, 137.88, 137.79, 135.53, 132.22, 131.12, 129.17, 129.02, 128.96, 128.93, 128.68, 128.60, 128.52, 128.42, 128.26, 128.11, 122.94, 94.43, 87.77, 86.47, 79.96, 78.95, 77.80, 77.73, 77.48, 77.16, 76.26, 76.13, 75.58, 73.93, 68.91 ppm.

 $[\alpha]_{D}^{25} = +0.7 (c = 0.20, CHCl_3).$

HRMS (ESI-TOF): calculated for C₄₀H₄₀INO₇SNa⁺ [M+Na⁺]: 828.1462, found: 828.1454.

methyl 4-(((2*S*,3*R*,4*S*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2*H*-pyran)-2 -sulfonamido)benzoate (3g)

3g was synthesized according to the general procedure B with a modification of temperature and time (80 °C, 40 h) and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a yellow oil (52.3 mg, 71% yield).

¹**H NMR** (400 MHz,CDCl₃) δ 7.82 (d, *J* = 8.2 Hz, 2H), 7.44-7.21 (m, 18H), 7.15-7.11 (m, 4H), 6.91 (s, 1H), 4.88 (t, *J* = 10.0 Hz, 2H), 4.81-4.75 (m, 3H), 4.50 (d, *J* = 23.2 Hz, 3H), 4.19 (d, *J* = 9.3 Hz, 1H), 3.98 (t, *J* = 9.0 Hz, 1H), 3.86 (s, 3H), 3.66-3.54 (m, 4H), 3.37-3.33 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 166.51, 140.86, 138.20, 137.80, 137.78, 137.46, 131.03, 128.87, 128.69, 128.64, 128.60, 128.31, 128.25, 128.22, 128.09, 128.05, 127.95, 127.77, 127.21, 121.32, 88.02, 86.13, 79.58, 78.60, 77.32, 75.94, 75.81, 75.21, 73.62, 68.72, 52.22 ppm.

 $[\alpha]_{D}^{25} = +2.0$ (c = 0.18, CHCl₃).

HRMS (ESI-TOF): calculated for C₄₂H₄₃NO₉SNa⁺ [M+Na⁺]: 760.2550, found: 760.2536.

(2*S*,3*R*,4*S*,5*R*,6*R*)-N-(2-acetylphenyl)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2*H*-pyran-2-sulfonamide (3h)

3h was synthesized according to the general procedure B with a modification of temperature and time (80 °C, 5 h) and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a white solid (47.2 mg, 65% yield).

¹**H NMR** (400 MHz,CDCl₃) δ 11.63 (s, 1H), δ 7.93 (d, J = 8.5 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.48-7.20 (m, 18H), 7.12-7.09 (m, 2H), 7.07 (t, J = 7.6 Hz, 1H), 5.03 (d, J = 9.7 Hz, 1H), 4.92 (d, J = 11.1 Hz, 1H), 4.87-4.72 (m, 3H), 4.54 (d, J = 10.7 Hz, 1H), 4.47 (d, J = 9.4 Hz, 1H), 4.41 (d, J = 12.0 Hz, 1H), 4.30 (d, J = 12.0 Hz, 1H), 4.06 (t, J = 9.1 Hz, 1H), 3.71 (t, J = 8.9 Hz, 1H), 3.67-3.53 (m, 2H), 3.44 (d, J = 11.3 Hz, 1H), 3.35-3.31 (m, 1H), 2.52 (s, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 202.31, 141.01, 138.34, 138.22, 137.91, 137.65, 134.99, 131.94, 128.83, 128.61, 128.54, 128.53, 128.50, 128.07, 128.05, 127.99, 127.88, 127.75, 127.74, 127.66, 122.56, 121.95, 119.29, 89.87, 86.25, 79.92, 78.49, 75.99, 75.69, 75.21, 73.63, 68.94, 28.17 ppm.

 $[\alpha]_D^{25} = +4.6$ (c = 0.15, CHCl₃).

HRMS (ESI-TOF): calculated for C₄₂H₄₃NO₈SNa⁺ [M+Na⁺]: 744.2601, found: 744.2597.

(2*S*,3*R*,4*S*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)-N-phenyltetrahydro-2*H*-pyran-2-sulfonamide (3i)

3i was synthesized according to the general procedure B with a conditions (80 °C, 24 h, 10 equiv NaHSO₃.) and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a yellow oil (31.2 mg, 46% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.35-7.16 (m, 18H), 7.16-7.03 (m, 7H), 6.66 (s, 1H), 4.87-4.81 (m, 2H), 4.77-4.66 (m, 3H), 4.49-4.42 (m, 3H), 4.09 (d, *J* = 9.4 Hz, 1H), 3.92 (t, *J* = 9.1 Hz, 1H), 3.62-3.54 (m, 3H), 3.49 (t, *J* = 9.3 Hz, 1H), 3.37-3.33 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 138.25, 137.85, 137.82, 137.52, 136.22, 129.35, 128.86, 128.64, 128.61, 128.59, 128.20, 128.12, 128.06, 127.90, 127.76, 126.16, 123.50, 86.93, 86.20, 79.52, 78.60, 77.42, 75.92, 75.75, 75.21, 73.60, 68.89 ppm.

 $[\alpha]_{D}^{25} = +1.8 (c = 0.12, CHCl_3).$

HRMS (ESI-TOF): calculated for $C_{40}H_{41}NO_7SNa^+$ [M+Na⁺]: 702.2495, found 702.2486.

(2*S*,3*R*,4*S*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)-N-(4-(tert-butyl)phenyl)tetrahydro -2*H*-pyran-2-sulfonamide (3j)

3j was synthesized according to the general procedure B with a modification of temperature and time (80 °C, 24 h) and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a white solid (53 mg, 72% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.37-7.22 (m, 18H), 7.18-7.13 (m, 6H), 6.61 (s, 1H), 4.95-4.87 (m, 2H), 4.81-4.73 (m, 3H), 4.54-4.51 (m, 3H), 4.15-4.12 (m, 2H), 3.97 (t, *J* = 9.2 Hz, 1H), 3.72-3.62 (m, 3H), 3.54 (t, *J* = 9.4 Hz, 1H), 3.47-3.43 (m, 1H), 1.22 (s, 9H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 149.26, 137.98, 137.60, 137.53, 137.23, 132.95, 128.65, 128.39, 128.37, 127.97, 127.95, 127.86, 127.84, 127.66, 127.52, 126.01, 123.65, 86.10, 85.97, 79.28, 78.34, 75.69, 75.52, 74.99, 73.37, 68.78, 34.30, 31.17 ppm.

 $[\alpha]_{D}^{25} = -31.7 (c = 0.19, CHCl_3).$

HRMS (ESI-TOF): calculated for C₄₄H₄₉NO₇SNa⁺ [M+Na⁺]: 758.3121, found: 758.3104.

(2*S*,3*R*,4*S*,5*R*,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)-N-(p-tolyl)tetrahydro-2*H*-pyran-2-sulfonamide (3k)

3k was synthesized according to the general procedure B with a condition (80 °C, 24 h, 10 equiv NaHSO₃.) and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a yellow solid (35.3 mg, 51% yield).

¹H NMR (500 MHz,CDCl₃) δ 7.41-7.20 (m, 18H), 7.14-7.12 (m, 2H), 7.07 (d, *J* = 8.3 Hz, 2H), 6.95 (d, *J* = 8.2 Hz, 2H), 4.92-4.87 (m, 2H), 4.82-4.72 (m, 3H), 4.55-4.49 (m, 3H), 4.13 (d, *J* = 9.4 Hz, 1H), 3.97 (t, *J* = 9.2 Hz, 1H), 3.70-3.60 (m, 3H), 3.54 (t, *J* = 9.4 Hz, 1H), 3.43-3.39 (m, 1H), 2.25 (s, 3H) ppm.
¹³C NMR (101 MHz, CDCl₃) δ 138.29, 137.91, 137.86, 137.58, 136.16, 133.47, 129.94, 128.85, 128.65, 128.61, 128.20, 128.16, 128.11, 128.07, 127.90, 127.78, 123.89, 86.65, 86.25, 79.57, 78.64, 75.93, 75.73,

75.22, 73.61, 68.95, 20.99 ppm.

 $[\alpha]_{D}^{25} = +1.8 (c = 0.12, CHCl_3).$

HRMS (ESI-TOF): calculated for C₄₁H₄₃NO₇SNa⁺ [M+Na⁺]: 716.2652, found: 716.2635.

N-(4-(((2S,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran)-2-((benzyloxy)methyl abbaa)-2-((benzyloxy)methylaxy)methylaxy)methylaxy(benzyloxy)methylaxy)methylaxy(benzyl

sulfonamido)phenyl)acetamide (3l)

31 was synthesized according to the general procedure C with a modification of time (6 h) and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (1:1 v/v) as the eluent, giving the titled product as a yellow solid (22.8 mg, 31% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.39-7.25 (m, 20H), 7.17-7.14 (m, 4H), 6.68 (s, 1H), 4.93-4.88 (m,2H), 4.84-4.75 (m, 3H), 4.55 (d, *J* = 9.7 Hz, 1H), 4.15 (d, *J* = 9.4 Hz, 1H), 3.99 (t, *J* = 9.1 Hz, 1H), 3.72-3.62 (m, 3H), 3.57 (t, *J* = 9.3 Hz, 1H), 3.45-3.43 (m, 1H), 2.98 (s, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 168.30, 138.26, 137.85, 137.83, 137.54, 136.26, 132.09, 128.83, 128.68, 128.64, 128.61, 128.47, 128.22, 128.15, 128.08, 128.01, 127.91, 127.88, 127.79, 124.61, 120.64, 86.86, 86.20, 79.56, 78.65, 75.94, 75.75, 75.21, 73.61, 68.85, 24.68 ppm.

 $[\alpha]_{D^{25}} = +2.2 (c = 0.12, CHCl_3).$

HRMS (ESI-TOF): calculated for C₄₂H₄₄N₂O₈SNa⁺ [M+Na⁺]: 759.2711, found: 759.2709.

(2*S*,3*R*,4*S*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)-N-(2-chloro-5-(trifluoromethyl)phe nyl)tetrahydro-2*H*-pyran-2-sulfonamide (3m)

3m was synthesized according to the general procedure B with a modification of temperature and time (80 °C, 24 h) and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a white solid (57 mg, 73% yield).

¹**H NMR** (500 MHz,CDCl₃) δ 8.04 (d, *J* = 2.0 Hz, 1H), 7.3 (m, 2H), 7.34-7.23 (m, 18H), 7.12-7.10 (m, 2H), 4.96-4.88 (m, 2H), 4.84 (d, *J* = 11.1 Hz, 1H), 4.81-4.76 (m, 2H), 4.53 (d, *J* = 10.8 Hz, 1H), 4.40 (t, *J* = 10.2 Hz, 2H), 4.34 (d, *J* = 11.9 Hz, 1H), 4.02 (t, *J* = 9.0 Hz, 1H), 3.75-3.65 (m, 2H), 3.63-3.60 (m, 1H), 3.56-3.54 (m, 1H), 3.42-3.39 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 138.22, 137.86, 137.34, 135.00, 130.07, 128.84, 128.64, 128.62, 128.58, 128.55, 128.25, 128.11, 128.03, 127.94, 127.75, δ 122.15 (q, *J* = 3.8 Hz), 118.93 (q, *J* = 4.2 Hz), 127.75, 90.16, 86.08, 80.02, 78.47, 75.99, 75.85, 75.24, 73.53, 68.38 ppm.

 $[\alpha]_{D}^{25} = -28.4 \ (c = 0.29, CHCl_3).$

HRMS (ESI-TOF): calculated for C₄₁H₃₉ClF₃NO₇SNa⁺ [M+Na⁺]: 804.1980, found: 804.1980.

(2*S*,3*R*,4*S*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)-N-(4-chloro-3-methylphenyl)tetrah ydro-2*H*-pyran-2-sulfonamide (3n)

3n was synthesized according to the general procedure B with a modification of temperature and time (80 °C, 24 h) and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a white solid (49.4 mg, 68% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.37-7.22 (m, 18H), 7.16-7.11 (m, 2H), 7.08-7.05 (m, 2H), 6.95-6.92 (m, 1H), 6.63 (s, 1H), 4.91-4.87 (m, 2H), 4.83-4.73 (m, 3H), 4.55-4.46 (m, 3H), 4.14 (d, *J* = 9.4 Hz, 1H), 3.97 (t, *J* = 9.2 Hz, 1H), 3.67-3.58 (m, 3H), 3.52 (t, *J* = 9.4 Hz, 1H), 3.43-3.39 (m, 1H), 2.20 (s, 3H) ppm.
¹³C NMR (101 MHz, CDCl₃) δ 138.21, 137.76, 137.47, 137.31, 134.67, 132.03, 129.74, 128.83, 128.69, 128.64, 128.62, 128.60, 128.28, 128.22, 128.10, 128.08, 127.92, 127.77, 125.85, 122.22, 86.95, 86.14, 79.60, 78.57, 77.42, 75.93, 75.76, 75.23, 73.67, 68.92, 20.06 ppm.

 $[\alpha]_D^{25} = -1.2$ (c = 0.25, CHCl₃).

HRMS (ESI-TOF): calculated for $C_{41}H_{42}CINO_7SNa^+$ [M+Na⁺]: 750.2263, found: 750.2264.

(2*S*,3*R*,4*S*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)-N-(5-chloropyridin-2-yl)tetrahydro -2*H*-pyran-2-sulfonamide (30)

30 was synthesized according to the general procedure B with a modification of temperature and time (80 °C, 48 h) and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a white solid (42.8 mg, 60% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 8.25 (d, *J* = 2.5 Hz, 1H), 7.44 (d, *J* = 8.9 Hz, 1H), 7.41-7.34 (m, 2H), 7.32 -7.17 (m, 17H), 7.08-7.05 (m, 2H), 4.97 (d, *J* = 9.7 Hz, 1H), 4.88 (d, *J* = 11.1 Hz, 1H), 4.83-4.87 (m, 2H), 4.73 (d, *J* = 10.8 Hz, 1H), 4.56-4.49 (m, 2H), 4.33-4.21 (m, 2H), 4.05 (t, *J* = 9.0 Hz, 1H), 3.73-3.62 (m, 2H), 3.54-3.51 (m, 1H), 3.40-3.38(m. 1H), 3.37-3.31 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 150.42, 146.11, 138.63, 138.32, 137.88, 137.53, 128.82, 128.63, 128.60, 128.56, 128.18, 128.04, 128.01, 127.91, 127.88, 127.75, 127.71, 126.87, 114.48, 90.82, 86.16, 79.64, 78.61, 77.05, 75.99, 75.74, 75.22, 73.48, 68.53 ppm.

 $[\alpha]_D^{25} = +1.2 (c = 0.17, CHCl_3).$

HRMS (ESI-TOF): calculated for C₃₉H₃₉ClN₂O₇SNa⁺ [M+Na⁺]: 737.2059, found: 737.2054.

(2*S*,3*R*,4*S*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)-N-(4-ethynylphenyl)tetrahydro-2*H*-pyran-2-sulfonamide (3p)

3p was synthesized according to the general procedure C with a modification of time (4.5 h) and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a white solid (26 mg, 37% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.37-7.22 (m, 20H), 7.13-7.11 (m, 2H), 7.09 (d, *J* = 8.2 Hz, 2H), 6.81 (s, 1H), 4.90-4.86 (m, 2H), 4.82-4.71 (m, 3H), 4.52-4.45 (m, 3H), 4.15 (d, *J* = 9.4 Hz, 1H), 3.96 (t, *J* = 9.1 Hz, 1H), 3.67-3.58 (m, 3H), 3.53 (t, *J* = 9.3 Hz, 1H), 3.39-3.35 (m, 1H), 3.03 (s, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 138.21, 137.80, 137.77, 137.47, 136.84, 133.23, 128.85, 128.69, 128.65, 128.63, 128.60, 128.26, 128.22, 128.09, 128.06, 127.93, 127.78, 122.52, 119.63, 87.53, 86.14, 83.05, 79.52, 78.58, 77.66, 75.94, 75.77, 75.21, 73.63, 68.82 ppm.

 $[\alpha]_{D}^{25} = +1.5$ (c = 0.15, CHCl₃).

HRMS (ESI-TOF): calculated for C₄₂H₄₁NO₇SNa⁺ [M+Na⁺]: 726.2496, found: 726.2495.

4-(((2*S*,3*R*,4*S*,5*R*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2*H*-pyran)-2-sulfona mido)benzoic acid (3q)

3q was synthesized according to the general procedure B with a modification of temperature and time (80 °C, 54 h) and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a white solid (30.3 mg, 42% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (d, J = 8.2 Hz, 2H), 7.30-7.20 (m, 20H), 7.12 – 7.06 (m, 2H), 4.86 – 4.81 (m, 2H), 4.74 – 4.70 (m, 3H), 4.48-4.42 (m, 3H), 4.17 (d, J = 9.3 Hz, 1H), 3.95 (t, J = 9.1 Hz, 1H), 3.63-3.50 (m, 4H), 3.33-3.31m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 170.60, 141.60, 138.13, 137.72, 137.66, 137.37, 131.71, 128.89, 128.71, 128.65, 128.61, 128.35, 128.28, 128.26, 128.11, 128.06, 127.97, 127.78, 121.11, 88.03, 86.06, 79.52, 78.56, 77.24, 75.97, 75.85, 75.22, 73.61 ppm.

 $[\alpha]_D^{25} = +2.0 \ (c = 0.13, CHCl_3).$

HRMS (ESI-TOF): calculated for C₄₁H₄₁NO₉SNa⁺ [M+Na⁺]: 746.2394, found: 746.2393.

(2*S*,3*R*,4*S*,5*S*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)-N-(3-fluorophenyl)tetrahydro-2*H*-pyran-2-sulfonamide (3r)

3r was synthesized according to the general procedure C with a modification of time (3.5 h) and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a white solid (40 mg, 53% yield).

¹**H NMR** (400 MHz,CDCl₃) δ 7.42 (d, *J* = 6.2 Hz, 2H), 7.38-7.26 (m, 18H), 7.08-6.98 (m, 2H), 6.91 (d, *J* = 10.1 Hz, 1H), 6.83 (d, *J* = 5.8 Hz, 1H), 6.80 (s, 1H), 4.95 (d, *J* = 11.6 Hz, 1H), 4.87 (s, 2H), 4.72 (s, 2H), 4.60 (d, *J* = 11.6 Hz, 1H), 4.48 (d, *J* = 11.6 Hz, 1H), 4.45-4.36 (m, 2H), 4.23 (d, *J* = 9.4 Hz, 1H), 3.86 (d, *J* = 2.7 Hz, 1H), 3.70-3.62 (m, 1H), 3.61 – 3.52 (m, 2H), 3.48-3.45 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 162.98 (d, *J* = 246.5 Hz), δ 138.32, 138.22 (d, *J* = 10.3 Hz), 137.93, 137.76, 137.62, 130.31 (d, *J* = 9.2 Hz), 128.92, 128.65, 128.61, 128.45, 128.20, 128.17, 128.10, 128.01, 127.87, 127.74, 118.37 (d, *J* = 3.0 Hz), 112.58 (d, *J* = 21.1 Hz), 110.23 (d, *J* = 25.0 Hz). 88.66, 83.64, 78.48, 75.95, 75.42, 74.68, 73.73, 73.50, 73.05, 68.96 ppm.

 $[\alpha]_{D^{25}} = +1.5$ (c = 0.25, CHCl₃).

HRMS (ESI-TOF): calculated for C₄₀H₄₀FNO₇SNa⁺ [M+Na⁺]: 720.2402, found: 720.2402

(2*S*,3*R*,4*S*,5*S*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)-N-(4-chloro-3-methylphenyl)tetrah ydro-2*H*-pyran-2-sulfonamide (3s)

3s was synthesized according to the general procedure C with a modification of time (22 h)and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as yellow oil (34.9 mg, 48% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.35-7.31 (m, 2H), 7.29-7.16 (m, 18H), 6.99 (d, *J* = 2.6 Hz, 1H), 6.94 (d, *J* = 8.4 Hz, 1H), 6.86-6.83 (m, 1H), 6.50 (s, 1H), 4.88 (d, *J* = 11.6 Hz, 1H), 4.78 (s, 2H), 4.64 (d, *J* = 0.9 Hz, 2H), 4.52 (d, *J* = 11.6 Hz, 1H), 4.39 (d, *J* = 11.6 Hz, 1H), 4.36 – 4.27 (m, 2H), 4.10 (d, *J* = 9.3 Hz, 1H), 3.78 (d, *J* = 1.7 Hz, 1H), 3.61-3.58 (m, 1H), 3.51-3.44 (m, 2H), 3.40-3.37 (m, 1H), 2.12 (s, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 138.37, 137.95, 137.80, 137.62, 137.17, 134.86, 131.78, 129.64, 128.96, 128.68, 128.64, 128.48, 128.24, 128.23, 128.20, 128.05, 127.91, 127.78, 125.74, 122.08, 88.10, 83.65, 78.62, 75.98, 75.48, 74.73, 73.85, 73.65, 73.11, 69.20, 20.04 ppm.

 $[\alpha]_{D^{25}} = -172.5 \ (c = 0.13, CHCl_3).$

HRMS (ESI-TOF): calculated for C₄₁H₄₂ClNO₇SNa⁺ [M+Na⁺]: 750.2263, found: 750.2267.

methyl 4-(((2*S*,3*R*,4*S*,5*S*,6*R*)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2*H*-pyran)-2-sulfonamido)benzoate (3t)

3t was synthesized according to the general procedure B with a modification of time (48 h) and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a white solid (38.3 mg, 52% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.78 (d, *J* = 8.6 Hz, 2H), 7.42-7.38 (m, 2H), 7.36-7.23 (m, 18H), 7.13 (d, *J* = 8.6 Hz, 2H), 6.77 (s, 1H), 4.92 (d, *J* = 11.6 Hz, 1H), 4.88-4.80 (m, 2H), 4.69 (s, 2H), 4.57 (d, *J* = 11.5 Hz, 1H), 4.42 (d, *J* = 11.5 Hz, 1H), 4.39-4.33 (m, 2H), 4.21 (d, *J* = 9.4 Hz, 1H), 3.88 (s, 3H), 3.85 (d, *J* = 2.6 Hz, 1H), 3.62-3.59 (m, 1H), 3.57-3.54 (m. 1H), 3.50 (t, *J* = 5.9 Hz, 1H), 3.47-3.45 (m, 1H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ 166.56, 141.14, 138.34, 137.89, 137.76, 137.61, 130.93, 128.94, 128.67, 128.64, 128.47, 128.18, 128.16, 128.04, 127.90, 127.75, 126.88, 121.14, 89.20, 83.67, 78.46, 75.97, 75.41, 74.76, 73.76, 73.48, 73.02, 68.85, 52.17 ppm. $[\alpha]_D^{25} = -44.2 \ (c = 0.17, CHCl_3).$

HRMS (ESI-TOF): calculated for C₄₂H₄₃NO₉SNa⁺ [M+Na⁺]: 760.2550, found: 760.2533.

(2*S*,3*R*,4*S*,5*S*,6*R*)-N-(2-acetylphenyl)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2*H*-pyran-2-sulfonamide (3u)

3u was synthesized according to the general procedure C with a modification of time (14 h) and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a white solid (28.8 mg, 40% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 11.55 (s, 1H), 7.93 (d, *J* = 8.4 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.42 - 7.24 (m, 18H), 7.19-7.14 (m, 2H), 7.05 (t, *J* = 7.7 Hz, 1H), 4.99 (d, *J* = 9.7 Hz, 1H), 4.91-4.83 (m,2H), 4.70 (s, 2H), 4.54 (d, *J* = 11.8 Hz, 1H), 4.47 (d, *J* = 9.3 Hz, 1H), 4.35 (t, *J* = 9.3 Hz, 1H), 4.28 (s, 2H), 3.85 (d, *J* = 2.7 Hz, 1H), 3.61-3.58 (m,1H), 3.48 (t, *J* = 6.3 Hz, 1H), 3.41-3.37 (m, 1H), 3.31-3.27 (m, 1H), 2.39 (s, 3H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 202.23, 141.21, 138.65, 138.03, 137.95, 137.77, 134.81, 131.85, 128.91, 128.64, 128.58, 128.48, 128.40, 128.00, 127.97, 127.95, 127.75, 127.69, 122.37, 121.81, 119.34, 90.78, 83.74, 77.90, 75.82, 75.00, 74.59, 73.57, 73.32, 73.03, 68.26, 28.04 ppm.

 $[\alpha]_{D}^{25} = +0.8$ (c = 0.11, CHCl₃).

HRMS (ESI-TOF): calculated for C₄₂H₄₃NO₈SNa⁺ [M+Na⁺]: 744.2602, found:744.2593.

(2S,3R,4S,5R)-3,4,5-tris(benzyloxy)-N-(3-fluorophenyl)tetrahydro-2H-pyran-2-sulfonamide (3v) 3v was synthesized according to the general procedure C with a modification of time (18 h) and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a white solid (31.1 mg, 54% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.26 (m, 15H), 7.23-7.19 (m, 1H), 6.90 – 6.83 (m, 2H), 6.82 – 6.76 (m, 1H), 6.41 (s, 1H), 4.96 – 4.88 (m, 2H), 4.82 (d, *J* = 9.9 Hz, 2H), 4.69 (d, *J* = 12.0 Hz, 1H), 4.59 (d, *J* = 11.7 Hz, 1H), 4.18 (d, *J* = 9.2 Hz, 1H), 4.15 – 4.06 (m, 1H), 3.99 (t, *J* = 8.8 Hz, 1H), 3.73 – 3.61 (m, 2H), 3.24-3.19 (m, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 163.15 (d, *J* = 247.3 Hz), δ 138.26, 137.90 (d, *J* = 15.3 Hz), 137.52, 130.69 (d, *J* = 9.3 Hz), 128.88, 128.71, 128.63, 128.52, 128.47, 128.23, 128.07, 128.01, 127.97, 127.92, 117.38 (d, *J* = 3.1 Hz), 112.72 (d, *J* = 21.2 Hz), 109.44 (d, *J* = 25.1 Hz). 88.13, 85.05, 78.38, 77.56, 76.10,

75.70, 73.53, 68.39 ppm.

 $[\alpha]_D^{25} = +5.1$ (c = 0.18, CHCl₃).

HRMS (ESI-TOF): calculated for $C_{32}H_{32}FNO_6SNa^+$ [M+Na⁺]: 600.1827, found: 600.1817.

(2*S*,3*R*,4*S*,5*R*)-3,4,5-tris(benzyloxy)-N-(4-chloro-3-methylphenyl)tetrahydro-2*H*-pyran-2-sulfonamide (3w)

3w was synthesized according to the general procedure C with a modification of time (48 h) and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a yellow oil (34 mg, 56% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.23 (m, 15H), 7.18 (d, J = 8.5 Hz, 1H), 6.86 (d, J = 2.6 Hz, 1H), 6.80-6.77 (m, 1H), 6.24 (s, 1H), 4.91-4.85 (m, 2H), 4.82 (d, J = 11.1 Hz, 2H), 4.77 (d, J = 9.9 Hz, 1H), 4.66 (d, J = 11.6 Hz, 1H), 4.56 (d, J = 11.6 Hz, 1H), 4.12 (d, J = 9.2 Hz, 1H), 4.09-4.05 (m, 1H), 3.95 (t, J = 8.7 Hz, 1H), 3.70 – 3.57 (m, 1H), 3.21-3.16 (m, 1H), 2.27 (s, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 138.27, 137.84, 137.57, 137.50, 134.69, 131.80, 129.90, 128.88, 128.71, 128.63, 128.50, 128.23, 128.02, 127.98, 124.80, 120.92, 87.73, 85.05, 78.41, 77.59, 76.08, 75.68, 73.53, 68.37, 20.28 ppm.

 $[\alpha]_D^{25} = -43.758 \ (c = 0.15, CHCl_3).$

HRMS (ESI-TOF): calculated for C₃₃H₃₄ClNO₆SNa⁺ [M+Na⁺]: 630.1688, found: 630.1678.

(2R,3S,4R,5R)-3,4,5-tris(benzyloxy)-N-(3-fluorophenyl)tetrahydro-2H-pyran-2-sulfonamide (3x)

3x was synthesized according to the general procedure C with a modification of time (2 h) and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a yellow oil (37.5 mg, 65% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.29 (m, 15H), 7.19-7.13 m, 1H), 6.87 – 6.81 (m, 2H), 6.78 (d, J = 8.0 Hz, 1H), 4.92 (d, J = 10.1 Hz, 1H), 4.79 (d, J = 10.1 Hz, 1H), 4.73 (d, J = 12.4 Hz, 1H), 4.67-4.62 (m, 3H), 4.42 (t, J = 8.7 Hz, 1H), 4.25 – 4.18 (m, 2H), 3.75 (s, 1H), 3.61-3.58 (m, 1H), 3.33 (s, 1H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ 162.96 (d, J = 246.5 Hz), 138.17 (d, J = 10.3 Hz), δ 137.95, 137.81, 137.76, 130.40 (d, J = 9.2 Hz), 128.89, 128.83, 128.67, 128.61, 128.41, 128.09, 128.06, 128.01, 127.94, 117.14 (d, J = 3.0 Hz), 112.22 (d, J = 21.0 Hz), 109.09 (d, J = 25.3 Hz), 89.08, 81.21, 75.88, 75.46, 72.26, 71.98, 71.68, 67.59 ppm.

 $[\alpha]_D^{25} = -166.923$ (c = 0.13, CHCl₃).

HRMS (ESI-TOF): calculated for C₃₂H₃₂FNO₆SNa⁺ [M+Na⁺]: 600.1827, found: 600.1820

(2*R*,3*S*,4*R*,5*R*)-3,4,5-tris(benzyloxy)-N-(2-chloro-5-(trifluoromethyl)phenyl)tetrahydro-2*H*-pyran-2-sulfonamide (3y)

3y was synthesized according to the general procedure C with a modification of time (8 h) and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a white solid (33.7 mg, 51% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.50 – 7.27 (m, 17H), 7.12 (s, 1H), 4.88 (d, *J* = 3.0 Hz, 2H), 4.72 (d, *J* = 12.7 Hz, 1H), 4.63 (d, *J* = 7.0 Hz, 3H), 4.42 (t, *J* = 8.5 Hz, 1H), 4.35 (d, *J* = 8.8 Hz, 1H), 4.18-4.14 (m, 1H), 3.73 (s, 1H), 3.62-3.60 (m, 1H), 3.30 (d, *J* = 12.6 Hz, 1H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 137.93, 137.81, 137.62, 134.98, δ 130.52 (q, J = 33.2 Hz), 130.09, 128.78, 128.63, 128.59, 128.18, 128.09, 128.04, 127.99, 127.93, 127.82, 127.78, 124.79, 122.03, (q, d, J = 3.8 Hz), 118.64 (q, J = 3.9 Hz). 90.97, 80.74, 75.66, 74.85, 72.39, 71.86, 71.59, 67.23 ppm. [α]_D²⁵ = -3.050 (c = 0.20, CHCl₃).

HRMS (ESI-TOF): calculated for C₃₃H₃₁ClF₃NO₆SNa⁺ [M+Na⁺]: 684.1405, found: 684.1398

3z

(2*R*,3*R*,4*R*,5*R*)-3,4-bis(benzyloxy)-5-((benzyloxy)methyl)-N-(3-fluorophenyl)tetrahydrofuran-2-sulfonamide (3z)

3z was synthesized according to the general procedure C with a modification of time (18 h) and isolated by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as the eluent, giving the titled product as a white solid (24 mg, 42% yield)

¹**H NMR** (400 MHz,CDCl₃) δ 7.42 – 7.22 (m, 15H), 7.20 – 7.10 (m, 1H), 6.88 – 6.75 (m, 3H), 6.35 (s, 1H), 4.83 (d, *J* = 12.0 Hz, 1H), 4.75 (d, *J* = 12.0 Hz, 1H), 4.63 – 4.46 (m, 5H), 4.22 (s, 1H), 3.94-3.90 (m, 1H), 3.86-3.83 (m, 1H), 3.73 (t, *J* = 10.6 Hz, 1H), 3.57-3.52 (m, 1H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 163.01 (d, *J* = 246.8 Hz), δ 138.52, 137.95 (d, *J* = 10.3 Hz), 137.69, 136.82, 130.53 (d, *J* = 9.2 Hz), 129.01, 128.73, 128.69, 128.41, 128.16, 127.80, 127.77, 127.64, 117.89 (d, *J* = 3.0 Hz), 112.79 (d, *J* = 21.2 Hz), 109.92 (d, *J* = 25.0 Hz), 84.59, 77.72, 74.65, 74.37, 73.43, 72.53, 71.70, 65.33 ppm.

 $[\alpha]_{D^{25}} = 11.600 (c = 0.20, CHCl_3).$

HRMS (ESI-TOF): calculated for C₃₂H₃₂FNO₆SNa⁺ [M+Na⁺]: 600.1827, found: 600.1813.

(2*S*,3*R*,4*S*,5*S*,6*R*)-N-(3-fluorophenyl)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2*H*-pyran-2-sulfonamide (4)

4 was synthesized according to the general procedure D and isolated by column chromatography on silica gel using dichloromethane: methanol (10:1 v/v) as the eluent, giving the titled product as a white oil (31.3mg, 93% yield).

¹**H NMR** (400 MHz, MeOD) δ 7.42-7.36 (m, 1H), 7.20 (d, *J* = 9.0 Hz, 2H), 6.97 (t, *J* = 8.6 Hz, 1H), 4.27 (d, *J* = 9.5 Hz, 1H), 3.95 (d, *J* = 12.2 Hz, 1H), 3.80 – 3.71 (m, 2H), 3.45 – 3.42 (m, 1H), 3.30 (d, *J* = 6.1 Hz, 2H) ppm.

¹³C NMR (101 MHz, MeOD) δ 164.37 (d, *J* = 244.6 Hz), 140.68 (d, *J* = 10.5 Hz), 131.56 (d, *J* = 9.3 Hz), 118.89 (d, *J* = 3.0 Hz), 112.72 (d, *J* = 21.4 Hz), 110.34 (d, *J* = 25.3 Hz). δ 89.68, 82.33, 78.90, 71.56, 70.96, 62.80 ppm.

 $[\alpha]_D^{25} = +176.4$ (c = 0.25, MeOH).

HRMS (ESI-TOF): calculated for $C_{12}H_{16}FNO_7SNa^+$ [M+Na⁺]: 360.0524, found: 360.0519.

9. NMR Spectra

Figure S5. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3a

Figure S7. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3b

Figure S9. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3c

Figure S11. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3d

Figure S13. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3e

Figure S15. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3f

Figure S17. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3g

Figure S19. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3h

Figure S21. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3i

Figure S23. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3j

Figure S25. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3k

Figure S27. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 31

Figure S28. ¹H NMR (500 MHz, CDCl₃) spectra for compound 3m

Figure S29. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3m

Figure S31. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3n

Figure S32. ¹H NMR (500 MHz, CDCl₃) spectra for compound 30

Figure S33. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 30

Figure S34. ¹H NMR (400 MHz, CDCl₃) spectra for compound 3p

Figure S35. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3p

Figure S36. ¹H NMR (400 MHz, CDCl₃) spectra for compound 3q

Figure S37. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3q

Figure S39. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3r

Figure S40. ¹H NMR (500 MHz, CDCl₃) spectra for compound 3s

Figure S41. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3s

Figure S42. ¹H NMR (500 MHz, CDCl₃) spectra for compound 3t

Figure S43. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3t

Figure S44. ¹H NMR (400 MHz, CDCl₃) spectra for compound 3u

Figure S45. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3u

Figure S46. ¹H NMR (400 MHz, CDCl₃) spectra for compound 3v

Figure S47. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3v

Figure S48. ¹H NMR (400 MHz, CDCl₃) spectra for compound 3w

Figure S49. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3w

Figure S50. ¹H NMR (400 MHz, CDCl₃) spectra for compound 3x

Figure S51. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3x

Figure S52. ¹H NMR (400 MHz, CDCl₃) spectra for compound 3y

Figure S53. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3y

Figure S55. ¹³C NMR (101 MHz, CDCl₃) Spectra for compound 3z

Figure S56. COSY (500 MHz, CDCl₃) Spectra for compound 3z

Figure S57. HSQC (500 MHz, CDCl₃) Spectra for compound 3z

Figure S58. HMBC (500 MHz, CDCl₃) Spectra for compound 3z

Figure S59. NOESY (500 MHz, CDCl₃) Spectra for compound 3z

Figure S60. ¹H NMR (400 MHz, CD₃OD) spectra for compound 4

Figure S61. ¹³C NMR (101 MHz, CD₃OD) Spectra for compound 4

10. References

- Zhang, W.; Xie, J.; Rao, B.; Luo, M. Iron-Catalyzed N-Arylsulfonamide Formation through Directly Using Nitroarenes as Nitrogen Sources. J. Org. Chem., 2015, 80, 3504-3511
- 2. Benson, G. A.; Spillane, W. J.; Sulfamic acid and its N-substituted derivatives. *Chem. Rev.* **1980**, 80, 151-186.
- Liu, Y.; Huang, J.; Wu, M.; Liu, B.; Lin, Q.; Wu, J.; Ouyang, Y.; Guo, X.; Huang, R.; Zhang, Y.; Xu, J. Design, synthesis of novel triptolide-glucose conjugates targeting glucose Transporter-1 and their selective antitumor effect. *Eur. J. Med. Chem.* 2022, 238, 114463.
- Ding, W.; Chen, X.; Sun, Z.; Luo, J.; Wang, S.; Lu, Q.; Ma, J.; Zhao, C.; Chen, F.; Xu, C. A Radical Activation Strategy for Versatile and Stereoselective N-Glycosylation. *Angew. Chem. Int. Ed.*, 2024, 63, e202409004.