Supplementary material for

Investigating the potential of N-methylglucamine modified cellulose microspheres for Sb(III) and Sb(V) removal from actual mine inflow

Jiangtao Yu², Wenkang Li³, Fan Yang¹, Yi Yang¹, Juntao Yan¹, Deng Ding¹,

Manman Zhang^{1*}, Xueyan Que^{2*}, Long Zhao^{3*}

*Corresponding author at: School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China (Long Zhao), E-mail address: zhaolong@hust.edu.cn; ryuuchou@hotmail.com.

¹ School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430040, China.

² Yangling Hesheng Irradiation Technologies Co., Ltd, Yangling, 712000, China.

³ State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Text S1:

Specifically, 5.0 g Celp sealed in polyethylene bag was purged with nitrogen gas for 3 min. The samples were irradiated at dose of 30 kGy by EB accelerator (1MeV, 10 kGy/pass) under the cooling of dry-ice, followed by injecting 50 mL GMA emulsion solution (30 % GMA, 3 % surfactant Tween 20) into the sample bag. Subsequently, the mixture was placed in a water bath at 50 °C for 2 h. The resulting product was labelled as Celp-g-GMA and purified from copolymer and unreacted monomer using acetone and ultrapure water. And the grafted polymers Celp-g-GMA were desiccated in vacuum at 60 °C.

The equations for PFO and PSO models (Eq.S1- Eq.S2) are presented as follows:

$$q_t = q_e (1 - e^{-k_1 t})$$
 (S1)

$$\frac{\mathsf{t}}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e} \tag{S2}$$

where k_1 (h⁻¹) and k_2 (h⁻¹ g mg⁻¹) were rate constant for PFO and the PSO model, respectively. q_e (mg/g) and q_t (mg/g) represented the amounts of Sb adsorbed per gram adsorbent at equilibrium and at time t (h), respectively.

The isotherm data for the capture of Sb(III) and Sb(V) by Celp-g-GMA-NMG were fitted using the Langmuir (Eq. S3) and Freundlich models (Eq. S4).

$$C_{e}/Q_{e} = C_{e}/Q_{m} + 1/(K_{L} \times Q_{m})$$
 (S3)

$$\ln Q_e = \ln K_F + \frac{1}{n} \ln C_e \tag{S4}$$

where the equilibrium concentration and adsorption capacity of Sb are denoted by C_e (mg/L) and Q_e (mg/g). Q_m (mg/g) is the theoretical maximum adsorption capacity of Sb on Celp-g-GMA-NMG. The Langmuir and Freundlich constants are expressed by K_L (L/mol) and K_F ((mg/g)/(L/mg)^{1/n}), respectively. The Freundlich exponent (n) represents the adsorption intensity.

The thermodynamic data for the adsorption of Sb(III) and Sb(V) onto Celp-g-GMA-NMG were fitted using Eq. (S5) and Eq. (S6).

$$\lg K_d = \frac{-\Delta H}{2.303RT} + \frac{\Delta S}{2.303R}$$
 (S5)

$$\Delta G = \Delta H - T \Delta S \tag{S6}$$

where ΔG (kJ/mol), ΔS (J/mol), and ΔH (kJ/mol) were Gibbs free energy, entropy and enthalpy, respectively. R was the molar gas constant (8.314 J/mol K) and T (K) represented the adsorption absolute temperature.

Fig. S1 SEM and elemental mapping images of Celp-g-GMA-NMG before and after adsorption.

Table S1 Kinetic parameter of Sb(III/V) individual adsorption onto Celp-g-GMA-NMG.

Parameter	b(III) Sb(V)				
$q_{e,exp} / (mg \cdot g^{-1})$	10.26	11.74			
$t_e / (h)$	6	1.5			
Pseudo-first order model					
$q_{e,est} / (mg \cdot g^{-1})$	9.4048	9.4048			
$k_1 / (h^{-1})$	0.1031	0.0832			
\mathbb{R}^2	0.9214	0.9606			
R^2_{adj}	0.9127	0.9550			
$\chi^2_{ m red}$	0.6128	0.1197			
RSS	5.5150	0.8382			
Pseudo-second order model					
$q_{e,est} / (mg \cdot g^{-1})$	10.1926	11.5340			
$k_2 / (g \cdot mg^{-1} \cdot h^{-1})$	0.0103	0.0152			
\mathbb{R}^2	0.9999	0.9998			
R^2_{adj}	0.9998	0.9998			
RSS	1.8384	0.8048			

 k_1 and k_2 : Adsorption kinetic rate constants of Pseudo-first order and Pseudo-second order models, respectively;

R²: correlation coefficient;

 R^2_{adj} : adjusted R^2 ;

 χ^2_{red} : Reduced chi-square;

RRS: Residual Sum of Squares.

Table S2 Isotherm parameter of Sb(III/V) individual adsorption onto Celp-g-GMA-NMG.

Parameter	Sb(III)	Sb(V)			
Langmuir model					
$q_{e,est} / (mg \cdot g^{-1})$	217.61	49.11			
$k_L / (L \cdot mg^{-1})$	0.1505	3.7466			
\mathbb{R}^2	0.9827	0.9639			
$R^2{}_{adj}$	0.9802	0.9567			
$\chi^2_{ m red}$	135.5199	18.5917			
RSS	948.6390	92.9585			
Freundlich model					
n	4.2676	6.3154			
$k_F / (mg/g) / (L/mg)^{1/n})$	62.7840	23.2958			
\mathbb{R}^2	0.9592	0.90502			
R^2_{adj}	0.9533	0.88602			
$\chi^2_{ m red}$	319.6012	48.9039			
RSS	2237.2086	244.5196			

K_L: the Langmuir constant:

 K_{F} and n: the Freundlich adsorption coefficient and constant, respectively:

R²: correlation coefficient;

R²_{adj}: adjusted R²;

 χ^2_{red} : Reduced chi-square;

RRS: Residual Sum of Squares.

Table S3 Calculated thermodynamic parameters of Celp-g-GMA-NMG.

	Δ H (kJ/mol)	ΔS (J/mol)	T (K)	ΔG (kJ/mol)	\mathbb{R}^2
Sb(III)		103.94	298	-6.7382	0.9949
	24.21		303	-7.3169	
	24.21		308	-7.8228	
			313	-8.2998	
Sb(V)		185.91	298	-11.1119	0.9982
	44.32		303	-11.9704	
			308	-12.9302	
			313	-13.8929	

Table S4 The main composition of actual mine inflow.

Composition	Concentration(mg/L)	Composition	Concentration(mg/L)
Ca	147.40	As	18.20
Sb	10.16	Si	9.07
Sr	0.21	Mg	46.80