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1. Sensor fabrication and measurement 

    The Au electrodes (~ 40 nm) were deposited onto the spin-coated CuPc/PVA ONFs 

films using a shadow mask for transistor fabrication. The films were equipped with 5 

pairs (10 conductive channels) of finger electrodes for sensors, with a channel length 

and width of 100 µm and 3 mm respectively. The flow and concentration of the target 

gases were regulated by an automated mixed gas system utilizing original gases, while 

commercially purchased clean dry (synthetic) air was employed. The initial 

concentrations of NO2 in the air were 1, 5, 10, 15, 20, and 25 ppm. The pure air served 

as the carrier gas, which was introduced into the device (enclosed in a chamber) at a 

velocity of 300 sccm during testing. The gas-off (pure air) pulses were maintained for 

a duration of 10 to 30 minutes, while the gas-on (target gases) pulses were also 

maintained for a duration of 10 to 30 minutes. The humidity controller regulates the 

moisture level of the gas entering the hermetically sealed testing chamber. The sensor 

system configuration is depicted in Fig. S1. 
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Fig. S1. Sensors test system illustration. 

 

2. The effect of CuPc solution concentration on electrical properties of the spin-

coated CuPc/PVA ONFs films 

The electrical properties of the spin-coated CuPc/PVA ONFs films transistors were 

investigated to examine the impact of varying concentrations of CuPc solution on their 

performance. The output and transfer characteristic curves of the spin-coated 

CuPc/PVA ONFs films transistors with solution concentrations of 45 mg/mL, 75 

mg/mL, and 105 mg/mL were illustrated in Fig. S2. 
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Fig. S2. The output curves of the spin-coated CuPc/PVA ONFs films transistors, (a) 45 

mg/mL, (c) 75 mg/mL, (e) 105 mg/mL. Transfer curves of the spin-coated CuPc/PVA ONFs 

films transistors, (b) 45 mg/mL, (d) 75 mg/mL, (f) 105 mg/mL. 
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3. Effect of NO2 gas concentration on electrical properties of the spin-coated 

CuPc/PVA ONFs films  

The impact of varying concentrations of NO2 gas on the electrical performance of 

OFETs composed of the spin-coated CuPc/PVA ONFs films was investigated. The 

output and transfer characteristic curves of the spin-coated CuPc/PVA ONFs films 

transistors with the CuPc solution concentration of 75 mg/mL were depicted in Fig. S3 

at NO2 gas concentrations ranging from 0 ppm to 20 ppm, including levels of 0 ppm, 5 

ppm, 15 ppm, and 20 ppm. The investigation of electrical properties is instrumental in 

advancing the analysis of the response mechanism exhibited by sensors based on the 

spin-coated CuPc/PVA ONFs films. 
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Fig. S3. Output curves and transfer curves of the spin-coated CuPc/PVA ONFs films 

transistors in different concentrations of NO2 gas. (a, e) 0 ppm, (b, f) 5 ppm, (c, g) 15 ppm, 

-60 -50 -40 -30 -20 -10 0

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

I D
S

 (
A

)

V
DS

 (V)

0 ppm

 

 

 

 

 0 V

 -10 V

 -20 V

 -30 V

 -40 V

 -50 V

 -60 V
-60 -50 -40 -30 -20 -10 0

-0.4

-0.3

-0.2

-0.1

0.0

5 ppm

I D
S

 (
A

)

V
DS

 (V)

 0 V

 -10 V

 -20 V

 -30 V

 -40 V

 -50 V

 -60 V

 

 

 

 

-60 -50 -40 -30 -20 -10 0

-0.8

-0.6

-0.4

-0.2

0.0

I D
S
 (


A

)

V
DS

 (V)

15 ppm

 0 V

 -10 V

 -20 V

 -30 V

 -40 V

 -50 V

 -60 V

  

 

-60 -50 -40 -30 -20 -10 0

-1.5

-1.2

-0.9

-0.6

-0.3

0.0

25 ppm

I D
S
 (


A

)

V
DS

 (V)

 0 V

 -10 V

 -20 V

 -30 V

 -40 V

 -50 V

 -60 V

 

 

 

 

-60 -50 -40 -30 -20 -10 0 10

10
-2

10
-1

 -40 V

 -50 V

 -60 V

I D
S
 (


A

)

V
GS

 (V)

0 ppm

 -10 V

 -20 V

 -30 V

 

 

 

 

-60 -50 -40 -30 -20 -10 0 10
10

-2

10
-1

 -40 V

 -50 V

 -60 V

I D
S
 (


A

)

V
GS

 (V)

5 ppm

 -10 V

 -20 V

 -30 V

 

 

 

 

-60 -50 -40 -30 -20 -10 0 10

10
-1

10
0

 -40 V

 -50 V

 -60 V

15 ppm

I D
S
(

A
)

V
GS

 (V)

 -10 V

 -20 V

 -30 V

 

 

 

 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

-60 -50 -40 -30 -20 -10 0 10
10

-1

10
0

 -40 V

 -50 V

 -60 V

I D
S
 (


A

)

V
GS

 (V)

25 ppm

 -10 V

 -20 V

 -30 V

 

 

 

 



6 

 

(d, h) 25 ppm. 

4. Change of sensing effect of the spin-coated CuPc/PVA ONFs films sensors 

with time  

The dynamic response curves of the spin-coated CuPc/PVA ONFs films sensors, 

which were exposed to 10 ppm NO2 for 0, 5, 10, and 15 days, were presented in Fig. 

S4. The responsivities of the spin-coated CuPc/PVA ONFs films sensors to NO2 at 15 

ppm exhibited minimal temporal variation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S4. The atmosphere stability of the spin-coated CuPc/PVA ONFs films sensors was 

tested in the placed days during 15 days. Continuous test stability curves of the spin-coated 

CuPc/PVA ONFs films sensors at 15 ppm and at room temperature (25 ℃) and 35 % RH. 
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5. Summary of sensors in recent years 

 The advantages of spin-coated CuPc/PVA ONFs film sensors can be better 

understood by summarizing the relevant information from a series of sensors reported 

in recent years, as presented in Table S1. 

Table S1. Comparison of some recent reported semiconductors gas sensors of different types. 
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