Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Promoting proton conduction performance of Nafion composite membrane

through doping simple and low-cost hydrated calcium terephthalate

Na Wang, Li Ding, Huiqi Zou, Zhipeng Huan, Jing Lu*, Houting Liu*, Suna Wang*, Yunwu Li

formula	C ₈ H ₁₀ O ₇ Ca
formula weight	258.24
Crystal system	monoclinic
space group	$P2_l/c$
a/Å	7.1121(2)
b/Å	21.6576(7)
c/Å	6.5900(2)
α/°	90
β/°	92.236(3)
$\gamma^{\prime \circ}$	90
$V/\text{\AA}^3, Z$	1014.30(6), 4
$D_{calc}(Mg/m^3), \mu(mm^{-1})$	1.691, 5.582
<i>F</i> (000)	536
θ range(°)	4.082-67.206
Limiting indices	-8≤h≤7, -25≤k≤16, -7≤l≤7
Reflections collected/unique	7967/1816 [R(int)=0.0421]
Data/restraints/parameters	1816/0/146
Completeness	100%
Goodness-of-fit on F^2	1.057
Final Rindices[I>2sigma(I)]	$R_1 = 0.0413, wR_2 = 0.1114$
R indices(all data)	R_1 =0.0427, wR_2 =0.1126
Largest diff. peak, hole	1.065, -0.343e·Å ⁻³

Table S1 Crystal and refinement data for Ca-MOF.

Table S2 Selected bond lengths and angels of Ca-MOF.

O(1)-Ca(1)#1	2.3624(16)	O(1)-Ca(1)	2.4901(16)	
O(2)-Ca(1)#2	2.3497(17)	O(2)-Ca(1)	2.5278(16)	
Ca(1)-O(5)	2.392(2)	Ca(1)-O(7)	2.5267(18)	
Ca(1)-O(6)	2.3746(17)	Ca(1)-O(7)#1	2.6394(18)	
O(5)-Ca(1)-O(2)	93.59(7)	O(2)#1-Ca(1)-O(6)	83.63(6)	
O(1)-Ca(1)-O(2)	51.73(5)	O(1)#2-Ca(1)-O(6)	85.56(6)	
O(7)-Ca(1)-O(2)	68.19(6)	O(2)#1-Ca(1)-O(5)	72.54(7)	

O(2)#1-Ca(1)-O(7)#1	68.93(6)	O(1)#2-Ca(1)-O(5)	72.77(7)
O(1)#2-Ca(1)-O(7)#1	145.90(6)	O(6)-Ca(1)-O(5)	106.64(8)
O(6)-Ca(1)-O(7)#1	77.71(6)	O(2)#1-Ca(1)-O(1)	78.64(6)
O(5)-Ca(1)-O(7)#1	140.48(7)	O(1)#2-Ca(1)-O(1)	128.55(6)
O(1)-Ca(1)-O(7)#1	65.23(5)	O(6)-Ca(1)-O(1)	142.58(6)
O(7)-Ca(1)-O(7)#1	79.23(5)	O(5)-Ca(1)-O(1)	99.08(8)
O(2)-Ca(1)-O(7)#1	101.87(5)	O(2)#1-Ca(1)-O(7)	146.94(6)
O(2)#1-Ca(1)-O(1)#2	138.77(6)	O(1)#2-Ca(1)-O(7)	68.86(6)
O(6)-Ca(1)-O(7)	81.08(6)	O(5)-Ca(1)-O(7)	140.13(7)
O(2)#1-Ca(1)-O(2)	126.06(6)	O(1)-Ca(1)-O(7)	96.32(6)
O(1)#2-Ca(1)-O(2)	77.64(5)	O(6)-Ca(1)-O(2)	148.59(6)

Symmetry codes: #1 x, -y+1/2, z-1/2; #2 x, -y+1/2, z+1/2.

Table S3 The water uptakes and area swelling ratios of pure nafion membrane and Ca-MOF/Nafion composite

membranes.

Membrane	Wdry/g	Wwet/g	Adry/cm ²	Awet/cm ²	water uptake	Area swelling
Pure Nafion	0.0217	0.0247	0.2500	0.2729	13.82%	9.16%
Ca-MOF/Nafion-3	0.0151	0.0176	0.2211	0.2289	16.56%	3.53%
Ca-MOF/Nafion-5	0.0169	0.0198	0.2261	0.2333	17.16%	3.18%
Ca-MOF/Nafion-7	0.0170	0.0201	0.2122	0.2187	18.24%	3.06%
Ca-MOF/Nafion-9	0.0321	0.0380	0.3801	0.3907	18.38%	2.79%

Table S4 Proton conductivities of pure nation membrane and Ca-MOF/Nation composite membranes at different

temperatures.

Т	pure	Ca-MOF/Nafion-3	Ca-MOF/Nafion-5	Ca-MOF/Nafion-7	Ca-MOF/Nafion-9
(K)	Nafion	$(S \cdot cm^{-1})$	$(S \cdot cm^{-1})$	$(S \cdot cm^{-1})$	$(S \cdot cm^{-1})$
	$(S \cdot cm^{-1})$				
308	$2.55 imes 10^{-3}$	3.56×10^{-3}	3.01×10^{-3}	4.40×10^{-3}	3.16×10^{-3}
313	$2.95 imes 10^{-3}$	3.90×10^{-3}	3.93×10^{-3}	5.32×10^{-3}	4.22×10^{-3}
318	3.48×10^{-3}	4.69×10^{-3}	4.99×10^{-3}	6.39×10^{-3}	5.28×10^{-3}
323	$4.19 imes 10^{-3}$	4.93×10^{-3}	5.31×10^{-3}	7.98×10^{-3}	6.21×10^{-3}
328	4.76×10^{-3}	6.45×10^{-3}	6.46×10^{-3}	9.99 ×10 ⁻³	7.11×10^{-3}
60	$5.43 imes 10^{-3}$	7.39×10^{-3}	7.20×10^{-3}	1.14×10^{-2}	7.67×10^{-3}
65	$6.26 imes 10^{-3}$	8.41×10^{-3}	7.35×10^{-3}	$1.29 imes 10^{-2}$	9.57×10^{-3}
70	$7.00 imes 10^{-3}$	9.25×10^{-3}	8.49×10^{-3}	$1.39 imes 10^{-2}$	1.08×10^{-2}
75	7.45×10^{-3}	1.03×10^{-2}	9.25×10^{-3}	1.51×10^{-2}	1.19×10^{-2}

Fig. S1 (a) The PXRD patterns of pure nafion membrane before and after the electrochemical experiment; (b, c, d and e) The PXRD patterns of Ca-MOF/Nafion composite membranes before and after the electrochemical experiment.

Fig. S2 Nyquist curves of (a) Ca-MOF/Nafion-3 (b) Ca-MOF/Nafion-5; (c) Ca-MOF/Nafion-7; (d) Ca-MOF/Nafion-9 composite membranes at different temperatures.

Fig. S3 Plot of $\ln(\sigma_{H^+}T)$ vs. 1/T with fitted activity energy and R² values of (a) pure nation membrane and (b) Ca-MOF/Nafion-3; (c) Ca-MOF/Nafion-5; (d) Ca-MOF/Nafion-7; (e) Ca-MOF/Nafion-9 composite membranes.